Eclipse下使用Hadoop单机模式调试MapReduce程序
在单机模式下Hadoop不会使用HDFS,也不会开启任何Hadoop守护进程,所有程序将在一个JVM上运行并且最多只允许拥有一个reducer
在Eclipse中新创建一个hadoop-test的Java工程(特别要注意的是Hadoop需要1.6或1.6以上版本的JDK)
在Hadoop的官网http://www.apache.org/dyn/closer.cgi/hadoop/common/上选择合适的地址下载hadoop-1.2.1.tar.gz
解压hadoop-1.2.1.tar.gz得到hadoop-1.2.1目录
将hadoop-1.2.1目录下和hadoop-1.2.1\lib目录下的jar包导入到hadoop-test工程中
接下来编写MapReduce程序(该程序用来统计每月收支结余)
Map:
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter; public class MapBus extends MapReduceBase
implements Mapper<LongWritable, Text, Text, LongWritable> {
@Override
public void map(LongWritable key, Text date,
OutputCollector<Text, LongWritable> output,
Reporter reporter) throws IOException {
//2013-01-11,-200
String line = date.toString();
if(line.contains(",")){
String[] tmp = line.split(",");
String month = tmp[0].substring(5, 7);
int money = Integer.valueOf(tmp[1]).intValue();
output.collect(new Text(month), new LongWritable(money));
}
}
}
Reduce:
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter; public class ReduceBus extends MapReduceBase
implements Reducer<Text, LongWritable, Text, LongWritable> {
@Override
public void reduce(Text month, Iterator<LongWritable> money,
OutputCollector<Text, LongWritable> output, Reporter reporter)
throws IOException {
int total_money = 0;
while(money.hasNext()){
total_money += money.next().get();
}
output.collect(month, new LongWritable(total_money));
}
}
Main:
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf; public class Wallet {
public static void main(String[] args){
if(args.length != 2){
System.err.println("param error!");
System.exit(-1);
} JobConf jobConf = new JobConf(Wallet.class);
jobConf.setJobName("My Wallet"); FileInputFormat.addInputPath(jobConf, new Path(args[0]));
FileOutputFormat.setOutputPath(jobConf, new Path(args[1]));
jobConf.setMapperClass(MapBus.class);
jobConf.setReducerClass(ReduceBus.class);
jobConf.setOutputKeyClass(Text.class);
jobConf.setOutputValueClass(LongWritable.class); try{
JobClient.runJob(jobConf);
}catch(Exception e){
e.printStackTrace();
}
}
}
还需准备待分析的文件,在E:\cygwin_root\home\input路径下创建2个文件,一个文件名为:2013-01.txt,另一个文件名为:2013-02.txt
2013-01.txt:
2013-01-01,100
2013-01-02,-100
2013-01-07,100
2013-01-10,-100
2013-01-11,100
2013-01-21,-100
2013-01-22,100
2013-01-25,-100
2013-01-27,100
2013-01-18,-100
2013-01-09,500
2013-02.txt:
2013-02-01,100
设置好运行参数后,就可以通过Run As -> Java Application运行MapReduce程序了
java.io.IOException: Failed to set permissions of path:
\tmp\hadoop-linkage\mapred\staging\linkage1150562408\.staging to 0700
报这个错误的主要原因是后期的hadoop版本增加了对文件路径的校验,我的修改方式比较简单,将hadoop-core-1.2.1.jar替换为hadoop-0.20.2-core.jar即可正常运行
下面是MapReduce程序运行时打印的日志
14/02/11 10:54:16 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
14/02/11 10:54:16 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
14/02/11 10:54:16 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
14/02/11 10:54:16 INFO mapred.FileInputFormat: Total input paths to process : 2
14/02/11 10:54:17 INFO mapred.JobClient: Running job: job_local_0001
14/02/11 10:54:17 INFO mapred.FileInputFormat: Total input paths to process : 2
14/02/11 10:54:17 INFO mapred.MapTask: numReduceTasks: 1
14/02/11 10:54:17 INFO mapred.MapTask: io.sort.mb = 100
14/02/11 10:54:17 INFO mapred.MapTask: data buffer = 79691776/99614720
14/02/11 10:54:17 INFO mapred.MapTask: record buffer = 262144/327680
14/02/11 10:54:17 INFO mapred.MapTask: Starting flush of map output
14/02/11 10:54:18 INFO mapred.MapTask: Finished spill 0
14/02/11 10:54:18 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
14/02/11 10:54:18 INFO mapred.LocalJobRunner: file:/E:/cygwin_root/home/input/2013-01.txt:0+179
14/02/11 10:54:18 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
14/02/11 10:54:18 INFO mapred.MapTask: numReduceTasks: 1
14/02/11 10:54:18 INFO mapred.MapTask: io.sort.mb = 100
14/02/11 10:54:18 INFO mapred.MapTask: data buffer = 79691776/99614720
14/02/11 10:54:18 INFO mapred.MapTask: record buffer = 262144/327680
14/02/11 10:54:18 INFO mapred.MapTask: Starting flush of map output
14/02/11 10:54:18 INFO mapred.MapTask: Finished spill 0
14/02/11 10:54:18 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
14/02/11 10:54:18 INFO mapred.LocalJobRunner: file:/E:/cygwin_root/home/input/2013-02.txt:0+16
14/02/11 10:54:18 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000001_0' done.
14/02/11 10:54:18 INFO mapred.LocalJobRunner:
14/02/11 10:54:18 INFO mapred.Merger: Merging 2 sorted segments
14/02/11 10:54:18 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 160 bytes
14/02/11 10:54:18 INFO mapred.LocalJobRunner:
14/02/11 10:54:18 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
14/02/11 10:54:18 INFO mapred.LocalJobRunner:
14/02/11 10:54:18 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now
14/02/11 10:54:18 INFO mapred.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to file:/E:/cygwin_root/home/output
14/02/11 10:54:18 INFO mapred.LocalJobRunner: reduce > reduce
14/02/11 10:54:18 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
14/02/11 10:54:18 INFO mapred.JobClient: map 100% reduce 100%
14/02/11 10:54:18 INFO mapred.JobClient: Job complete: job_local_0001
14/02/11 10:54:18 INFO mapred.JobClient: Counters: 13
14/02/11 10:54:18 INFO mapred.JobClient: FileSystemCounters
14/02/11 10:54:18 INFO mapred.JobClient: FILE_BYTES_READ=39797
14/02/11 10:54:18 INFO mapred.JobClient: FILE_BYTES_WRITTEN=80473
14/02/11 10:54:18 INFO mapred.JobClient: Map-Reduce Framework
14/02/11 10:54:18 INFO mapred.JobClient: Reduce input groups=2
14/02/11 10:54:18 INFO mapred.JobClient: Combine output records=0
14/02/11 10:54:18 INFO mapred.JobClient: Map input records=12
14/02/11 10:54:18 INFO mapred.JobClient: Reduce shuffle bytes=0
14/02/11 10:54:18 INFO mapred.JobClient: Reduce output records=2
14/02/11 10:54:18 INFO mapred.JobClient: Spilled Records=24
14/02/11 10:54:18 INFO mapred.JobClient: Map output bytes=132
14/02/11 10:54:18 INFO mapred.JobClient: Map input bytes=195
14/02/11 10:54:18 INFO mapred.JobClient: Combine input records=0
14/02/11 10:54:18 INFO mapred.JobClient: Map output records=12
14/02/11 10:54:18 INFO mapred.JobClient: Reduce input records=12
运行完成后将在E:\cygwin_root\home\output路径下生成2个文件:.part-00000.crc和part-00000。.part-00000.crc为一二进制文件,是一个保存了part-00000文件校验和的内部文件;part-00000文件中保存了最终的统计结果
01 500
02 100
特别要注意的是每次运行前都需要先将输出路径删掉,否则会报
org.apache.hadoop.mapred.FileAlreadyExistsException:
Output directory file:/E:/cygwin_root/home/output already exists
Hadoop做这个校验的目的是为了避免上一次MapReduce程序没有完成时,再次执行MapReduce程序产生的中间文件会覆盖掉上一次的中间文件
Eclipse下使用Hadoop单机模式调试MapReduce程序的更多相关文章
- eclipse远程连接hadoop单机模式出现的问题
按照http://tydldd.iteye.com/blog/2007938配置单机模式 主要是 (1)配置hadoop-env.sh,指定jdk的安装路径 添加jdk路径 # The java im ...
- Hadoop单机模式安装
一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面上的程序: ...
- 3-1.Hadoop单机模式安装
Hadoop单机模式安装 一.实验介绍 1.1 实验内容 hadoop三种安装模式介绍 hadoop单机模式安装 测试安装 1.2 实验知识点 下载解压/环境变量配置 Linux/shell 测试Wo ...
- centos7 hadoop 单机模式安装配置
前言 由于现在要用spark,而学习spark会和hdfs和hive打交道,之前在公司服务器配的分布式集群,离开公司之后,自己就不能用了,后来用ambari搭的三台虚拟机的集群太卡了,所以就上网查了一 ...
- Hadoop单机模式的配置与安装
Hadoop单机模式的配置与安装 单机hadoop集群正常启动后进程情况 ResourceManager NodeManager SecondaryNameNode NameNode DataNode ...
- windows下eclipse远程连接hadoop集群开发mapreduce
转载请注明出处,谢谢 2017-10-22 17:14:09 之前都是用python开发maprduce程序的,今天试了在windows下通过eclipse java开发,在开发前先搭建开发环境.在 ...
- Hadoop单机模式/伪分布式模式/完全分布式模式
一.Hadoop的三种运行模式(启动模式) 一.单机(非分布式)模式 这种模式在一台单机上运行,没有分布式文件系统,而是直接读写本地操作系统的文件系统. 默认情况下,Hadoop即处于该模式,用于开发 ...
- Hadoop单机模式安装-(3)安装和配置Hadoop
网络上关于如何单机模式安装Hadoop的文章很多,按照其步骤走下来多数都失败,按照其操作弯路走过了不少但终究还是把问题都解决了,所以顺便自己详细记录下完整的安装过程. 此篇主要介绍在Ubuntu安装完 ...
- Eclipse/MyEclipse下如何Maven管理多个Mapreduce程序?(企业级水平)
不多说,直接上干货! 如何在Maven官网下载历史版本 Eclipse下Maven新建项目.自动打依赖jar包(包含普通项目和Web项目) Eclipse下Maven新建Web项目index.jsp报 ...
随机推荐
- Hadoop家族学习路线图
主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项 ...
- 以编程方式使用 Word 中的内置对话框
使用 Microsoft Office Word 时,有时需要显示用户输入对话框.虽然可以创建自己的对话框,您也许还希望采用使用 Word 中内置对话框的方法,这些对话框在Application 对象 ...
- [NYOJ 536] 开心的mdd
开心的mdd 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述himdd有一天闲着无聊,随手拿了一本书,随手翻到一页,上面描述了一个神奇的问题,貌似是一个和矩阵有关的东西. ...
- 在DDMS中查看网络使用详情
在Android 4.0设置中的“流量使用情况”允许长期统计每个App如何使用网络资源.从4.0.3开始,配合最新发布的DDMS r17(在ADT r17 插件中有集成),您可以实时的在DDMS中查看 ...
- 解决eclipse闪退的办法
Eclipse Java EE 便出现打开闪退的现象. 修改eclipse.ini无效,参照了网上许多方法也不行. 最后发现了一个蛋疼的方法: 1.打开eclipse的workspace目录 2.删除 ...
- Add controls dynamically in flowlayoutpanel
For a FlowLayoutPanel, you don't need to specify a location since the controls are arranged for you. ...
- c++学习_2
这里承接上一篇文章,继续记录关于继承的那些事儿... NVI(non-Virtual Interface)和strategy模式 NVI模式和strategy模式是两种不同的方法,可以用来替代virt ...
- JUnit学习总结
Junit简介: Junit最初是由Erich Gamma 和 Kent Beck 编写的一个回归测试框架(regression testing framework),为单元测试(Unit Test) ...
- HW3.24
public class Solution { public static void main(String[] args) { int number = (int)(Math.random() * ...
- linux和MAC下静态库.a文件合并
这两天开发群了讨论了一个文体,如何合并众多的.a文件. 有人给了建议,使用ar 解.a,生成.o.然后合并所有的.o文件. 我在MAC OS下尝试了一下. 正好赶上编译了ffmpeg的IOS armv ...