机器学习笔记1——Introduction
Introduction
What is Machine Learning?
Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
- E = the experience of playing many games of checkers
- T = the task of playing checkers.
- P = the probability that the program will win the next game.
Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
Supervised learning problems are categorized into "regression" and "classification" problems. In a regressionproblem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in adiscrete output. In other words, we are trying to map input variables into discrete categories.
Example:
Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discretecategories.
Unsupervised Learning
Unsupervised learning, on the other hand, allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
We can derive this structure by clustering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the prediction results, i.e., there is no teacher to correct you. It’s not just about clustering. For example, associative memory is unsupervised learning.
Example:
Clustering: Take a collection of 1000 essays written on the US Economy, and find a way to automatically group these essays into a small number that are somehow similar or related by different variables, such as word frequency, sentence length, page count, and so on.
Associative: Suppose a doctor over years of experience forms associations in his mind between patient characteristics and illnesses that they have. If a new patient shows up then based on this patient’s characteristics such as symptoms, family medical history, physical attributes, mental outlook, etc the doctor associates possible illness or illnesses based on what the doctor has seen before with similar patients. This is not the same as rule based reasoning as in expert systems. In this case we would like to estimate a mapping function from patient characteristics into illnesses.
机器学习笔记1——Introduction的更多相关文章
- 机器学习笔记:Gradient Descent
机器学习笔记:Gradient Descent http://www.cnblogs.com/uchihaitachi/archive/2012/08/16/2642720.html
- 机器学习笔记5-Tensorflow高级API之tf.estimator
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...
- Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- Python机器学习笔记:不得不了解的机器学习面试知识点(1)
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...
- 机器学习笔记(4):多类逻辑回归-使用gluton
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...
- 【转】机器学习笔记之(3)——Logistic回归(逻辑斯蒂回归)
原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读 ...
- cs229 斯坦福机器学习笔记(一)-- 入门与LR模型
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
随机推荐
- html5 canvas绘制圆形印章,以及与页面交互
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- php练习3——猜拳游戏,评委打分问题
用户与计算机猜拳 程序caiQuan.html和caiQuan.php: 结果: 评委打分问题,去掉一个最低分和最高分,求平均分,并找出最低分和最高分对应第几个评委, 再找出最佳评委(打分最接近 ...
- a标签拨打电话、发短信、发邮件
1.<a href=”tel:xxxx”>拨打电话</a> 2.<a href=”sms:xxxx”>发短信</a> 3.<a href=”mai ...
- (转载)EhLib 在 Delphi 7 下的安装方法
EhLib 在 Delphi 7 下的安装方法 1.将 EhLib 解压到一个目录,如:E:\VCL\EhLib: 2.将 EhLib 安装目录下 Common 目录.DataService 目录下的 ...
- python从socket做个websocket的聊天室server
下面的是server端:把IP改成自己的局域网IP: #coding:utf8 import socket,select import SocketServer import hashlib,base ...
- networkRequest
void TPHttp::applyResource(){ QJsonObject json; json.insert("ProductCode","MoVd ...
- SQLSERVER与C#中数据类型的对应关系
SQLSERVER与C#中数据类型的对应关系 ///<summary> ///数据库中与C#中的数据类型对照 ///</summary> ///<paramname=&q ...
- 5个有用的.net profiling工具(转)
我们有时需要对研发的软件程序进行性能测试,这时需要用到一些Profilers工具.下面列出5个有用的.net Profilers: 1. JetBrains dotTrace JetBrains do ...
- Uva 1354 Mobile Computing
题目链接 题意: 在一个宽为r 的房间里, 有s个砝码, 每个天平的一端要么挂砝码, 要么挂另一个天平, 并且每个天平要保持平衡. 求使得所有砝码都放在天平上, 且总宽度不超过房间宽度的最大值. 思路 ...
- python的random函数
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...