[USACO10MAR]伟大的奶牛聚集

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。

每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。

在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。                                   ——by洛谷(感谢洛谷少有的良心翻译)

http://daniu.luogu.org/problem/show?pid=2986



建图,然后把她当做以任意点为根的树,然后很容易想用树DP。我们发现a与其父节点b;a为集合点的路径有两类:

  1. 直接到a;(我们把到a路径符合此类的点集记为A);
  2. 先到b;(我们把到a路径符合此类的点集记为B);

于是当我们知道f[b]时,f[a]即为在f[b]的基础上A中点不必走a->b,B中点要再走b->a,而A即是a的子树点集;

得方程:

f[a]=f[fa[a]]-tree[a]*dis(a->b)+(tree[root]-tree[a])*dis(a->b);

(想象所有点先聚集于b,再全走到a,其中a的子树上节点多走了,故减去)

代码如下:

#include<cstdio>
using namespace std;
int n;
int c[];
long long f1[],f[];
struct ss
{
int next,to,dis;
}x[];
int first[],num;
long long all;
void build(int f,int t,int d)
{
x[++num].next=first[f];
x[num].to=t;
x[num].dis=d;
first[f]=num;
}
long long dfs(int ,int );
void dp(int ,int ,int ); int main()
{
scanf("%d",&n);
int i,j,k,l;
for(i=;i<=n;i++)
scanf("%d",&c[i]),all+=c[i];
for(i=;i<=n-;i++)
{
scanf("%d%d%d",&j,&k,&l);
build(j,k,l);
build(k,j,l);
}
f[]=dfs(,-);
dp(,,);
all=;
for(i=;i<=n;i++)
if(f[i]<all)
all=f[i];
printf("%lld",all);
return ;
} long long dfs(int fa,int last)
{
int j;
long long sum=;
j=first[fa];
f1[fa]=c[fa];
while(j)
{
if(x[j].to!=last)
{
sum+=dfs(x[j].to,fa)+x[j].dis*f1[x[j].to];
f1[fa]+=f1[x[j].to];
}
j=x[j].next;
}
return sum;
}
void dp(int fa,int last,int di)
{
int j;
f[fa]=f[last]-f1[fa]*di+(all-f1[fa])*di;
j=first[fa];
while(j)
{
if(x[j].to!=last)
dp(x[j].to,fa,x[j].dis);
j=x[j].next;
}
}

祝AC哟;

[USACO10MAR]伟大的奶牛聚集的更多相关文章

  1. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  2. P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  3. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  4. [USACO10MAR]伟大的奶牛聚集 BZOJ 1827 树形dp+dfs

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  5. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…【树形dp】By cellur925

    题目传送门 首先这道题是在树上进行的,然后求最小的不方便程度,比较符合dp的性质,那么我们就可以搞一搞树形dp. 设计状态:f[i]表示以i作为聚集地的最小不方便程度.那么我们还需要各点间的距离,但是 ...

  6. BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather

    [题解] 很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案.这样整个效率是O(N^2)的,显然不行. 我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案. 显然选择它 ...

  7. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  8. P2986 [USACO10MAR]伟大的奶牛聚集(思维,dp)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

随机推荐

  1. Tomacat服务器的安装和配置

    一, Tomcat服务器的下载地址(Apache Tomcat的官网):  http://tomcat.apache.org/download-70.cgi 这里为了稳定性安装的版本为7.0. 截止目 ...

  2. java随机生成字符串并排序

    package com.Imooc; import java.util.ArrayList; import java.util.Collections; import java.util.List; ...

  3. How to Run Node.js with Express on Mobile Devices

    We released a JXcore plugin for Apache Cordova recently and in this article I will show how to run a ...

  4. iOS 并发:NSOperation 与调度队列入门(1)

    一直以来,并发都被视为 iOS 开发中的「洪水猛兽」.许多开发者都将其视为危险地带,唯恐避之而不及.更有谣传认为,多线程代码应该尽力避免.笔者同意,如果你对并发的了解不够深入,就容易造成危险.但是,危 ...

  5. php邮件发送 phpmailer

    首先要安装phpmailer开源项目. 将class.phpmailer.php转移到php文件夹下, 编写代码: <?php require("class.phpmailer.php ...

  6. IB_DESIGNABLE的使用

    创建LHQTextField 继承自: UITextField 将我自定义的textField在面板中进行关联 此时,在设置刚来添加的属性的值的时候,就会立马出效果

  7. 一个灵巧的Delphi多播实事件现方案

    一个灵巧的Delphi多播实现方案.必须是支持泛型的Delphi版本.也就是Delphi2009以后.强烈建议用DelphiXE. 用法就是例如写一个Class指定一个Event,触发的时候会通知多个 ...

  8. Yii 实现restful

    首先做一下接口的 URL 规划,假设我们要面对的资源是 item ,现在我们暴露5个接口供其他应用调用,分别是: 对于所有 item 列表调用: GET /rest/item 对于某个 item 信息 ...

  9. 打死也不换系统?笑谈过气的Windows XP

    http://tech.qq.com/a/20131012/007336.htm 按照IT领域的“安迪-比尔定律”:软件和游戏不断生成过户需求,硬件则通过技术创新来消化这些需求,这个过程会刺激用户在电 ...

  10. VJP1193 扫雷(状压)

    链接 保存当前行和前一行两行的状态 #include <iostream> #include<cstdio> #include<cstring> #include& ...