题目:https://www.luogu.org/problemnew/show/P1073

由于任何城市都可以多次经过,所以可以随便走,也就不用太在意有向边和无向边,把无向边当做两条有向边处理;

根据题意,价格较小的城市要先于价格较大的城市被经过,然而它又可以随便走,所以不妨分开考虑;

每个点维护两个值,一个是从起点到它的最小值,一个是从终点到它的最大值,在每个城市的二者之差中取MAX即可;

于是问题转化为求两个单源最短路,对于终点出发的那个,将边全部反向进行最短路即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
priority_queue< pair<int,int> >q;
int const MAXN=1e5+,MAXM=5e5+;
int n,m,head[MAXN],ct,s[MAXN],t[MAXN],head2[MAXN],ct2,cost[MAXN],ans;
bool vis[MAXN];
struct N{
int to,next;
N(int t=,int n=):to(t),next(n) {}
}edge[MAXM],edge2[MAXM];
void add(int x,int y,int z)
{
edge[++ct]=N(y,head[x]);head[x]=ct;
edge2[++ct2]=N(x,head2[y]);head2[y]=ct;
if(z==)
{
edge[++ct]=N(x,head[y]);head[y]=ct;
edge2[++ct2]=N(y,head2[x]);head2[x]=ct;
}
}
void dijkstra1()
{
while(q.size())q.pop();
memset(s,0x3f,sizeof s);
memset(vis,,sizeof vis);
s[]=cost[];q.push(make_pair(-cost[],));//大根堆
while(q.size())
{
int x=q.top().second;q.pop();
if(vis[x])continue;//!
vis[x]=;
for(int i=head[x],u;i;i=edge[i].next)
if(s[u=edge[i].to]>min(s[x],cost[u]))
{
s[u]=min(s[x],cost[u]);
q.push(make_pair(-s[u],u));
}
}
}
void dijkstra2()
{
while(q.size())q.pop();
memset(t,-,sizeof t);
memset(vis,,sizeof vis);
t[n]=cost[n];q.push(make_pair(cost[n],n));//大根堆
while(q.size())
{
int x=q.top().second;q.pop();
if(vis[x])continue;//!
vis[x]=;
for(int i=head2[x],u;i;i=edge2[i].next)
if(t[u=edge2[i].to]<max(t[x],cost[u]))
{
t[u]=max(t[x],cost[u]);
q.push(make_pair(t[u],u));
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&cost[i]);
for(int i=,x,y,z;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
dijkstra1();
dijkstra2();
for(int i=;i<=n;i++)
ans=max(ans,t[i]-s[i]);
printf("%d",ans);
return ;
}

洛谷P1073最优贸易——双向取值的更多相关文章

  1. 洛谷 P1073 最优贸易 解题报告

    P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...

  2. 洛谷P1073 最优贸易==codevs1173 最优贸易

    P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...

  3. 洛谷——P1073 最优贸易

    P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...

  4. 洛谷 P1073 最优贸易 最短路+SPFA算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...

  5. 洛谷P1073 最优贸易 [图论,DP]

    题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...

  6. 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)

    传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...

  7. 洛谷 P1073 最优贸易

    题目描述 CC C 国有 n n n 个大城市和 m mm 条道路,每条道路连接这 nnn 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路 ...

  8. [NOIP2009] 提高组 洛谷P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  9. NOIP2009 codevs1173 洛谷P1073 最优贸易

    Description: 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通 ...

随机推荐

  1. lua——基础语法

    -- test lua: for learning lua grammar -- line comment --[[ block comment ]]-- -- print hello world p ...

  2. 串匹配算法讲解 -----BF、KMP算法

      参考文章: http://www.matrix67.com/blog/archives/115     KMP算法详解 http://blog.csdn.net/yaochunnian/artic ...

  3. MySQL 压缩解决方案

    From:https://www.qcloud.com/community/article/876100 导语 描述 MySQL 压缩的使用场景和解决方案,包括压缩传输协议.压缩列解决方案和压缩表解决 ...

  4. Ejb in action(六)——拦截器

    Ejb拦截器可以监听程序中的一个或全部方法.与Struts2中拦截器同名,并且他们都可以实现切面式服务.同一时候也与Spring中的AOP技术类似. 不同的是struts2的拦截器的实现原理是一层一层 ...

  5. UVA10317- Equating Equations(回溯+剪枝)

    题目链接 题意:给出一个式子,但这个式子不一定是等式,在'+','-','='符号位置不变的情况下,又一次排列数字的位置,使其成为等式.假设能够的话.输出当中一种排列方式. 思路:我们将等号右边的数所 ...

  6. 实习日记)select option 选择不同的option时, 页面发生不同的变化

    怎么在下拉框的选择不同的option时, 页面发生响应的变化 因为option是没有点击事件什么的,  只有select才有, 所以不能通过option的点击事件来完成, 所以开始的尝试都失败了(之前 ...

  7. C---指针篇

    指针变量:专门存放内存地址的一种变量 听说C因为指针而强大 一段代码来解释 指针 *指针 &指针 &指向变量 的关系 /* * 返回指针所指向内存地址中存放的值 它是单目运算符 也称作 ...

  8. 后台运行命令:&amp;和nohup command &amp; 以及关闭、查看后台任务

    当我们在终端或控制台工作时.可能不希望由于执行一个作业而占住了屏幕,由于可能还有更重要的事情要做,比方阅读电子邮件. 对于密集訪问磁盘的进程,我们更希望它可以在每天的非负荷高峰时间段执行(比如凌晨). ...

  9. AndroidManifest具体解释之Application(有图更好懂)

    可以包括的标签: <activity> <activity-alias> <service> <receiver> <provider> & ...

  10. 01 json方式封装通信接口

    新建一个json_api.php<?php class Response{ /** *按json方式输出通信 *@param integet $code 状态码 *@param string $ ...