Elasticsearch研究有一段时间了,现特将Elasticsearch相关核心知识和原理以初学者的角度记录下来,如有不当,烦请指正!

0. 带着问题上路——ES是如何产生的?

(1)思考:大规模数据如何检索?

如:当系统数据量上了10亿、100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题: 
1)用什么数据库好?(mysql、sybase、oracle、达梦、神通、mongodb、hbase…) 
2)如何解决单点故障;(lvs、F5、A10、Zookeep、MQ) 
3)如何保证数据安全性;(热备、冷备、异地多活) 
4)如何解决检索难题;(数据库代理中间件:mysql-proxy、Cobar、MaxScale等;) 
5)如何解决统计分析问题;(离线、近实时)

(2)传统数据库的应对解决方案

对于关系型数据,我们通常采用以下或类似架构去解决查询瓶颈和写入瓶颈: 
解决要点: 
1)通过主从备份解决数据安全性问题; 
2)通过数据库代理中间件心跳监测,解决单点故障问题; 
3)通过代理中间件将查询语句分发到各个slave节点进行查询,并汇总结果

(3)非关系型数据库的解决方案

对于Nosql数据库,以mongodb为例,其它原理类似: 
解决要点: 
1)通过副本备份保证数据安全性; 
2)通过节点竞选机制解决单点问题; 
3)先从配置库检索分片信息,然后将请求分发到各个节点,最后由路由节点合并汇总结果

另辟蹊径——完全把数据放入内存怎么样?

我们知道,完全把数据放在内存中是不可靠的,实际上也不太现实,当我们的数据达到PB级别时,按照每个节点96G内存计算,在内存完全装满的数据情况下,我们需要的机器是:1PB=1024T=1048576G 
节点数=1048576/96=10922个 
实际上,考虑到数据备份,节点数往往在2.5万台左右。成本巨大决定了其不现实!

从前面讨论我们了解到,把数据放在内存也好,不放在内存也好,都不能完完全全解决问题。 
全部放在内存速度问题是解决了,但成本问题上来了。 
为解决以上问题,从源头着手分析,通常会从以下方式来寻找方法: 
1、存储数据时按有序存储; 
2、将数据和索引分离; 
3、压缩数据; 
这就引出了Elasticsearch。

1. ES 基础一网打尽

1.1 ES定义

ES=elaticsearch简写, Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。 
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.2 Lucene与ES关系?

1)Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。

2)Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.3 ES主要解决问题:

1)检索相关数据; 
2)返回统计结果; 
3)速度要快。

1.4 ES工作原理

当ElasticSearch的节点启动后,它会利用多播(multicast)(或者单播,如果用户更改了配置)寻找集群中的其它节点,并与之建立连接。这个过程如下图所示:

1.5 ES核心概念

1)Cluster:集群。

ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。

2)Node:节点。

形成集群的每个服务器称为节点。

3)Shard:分片。

当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户端的请求等,一个节点可能不够。这种情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。 
当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在。即:这个过程对用户来说是透明的。

4)Replia:副本。

为提高查询吞吐量或实现高可用性,可以使用分片副本。 
副本是一个分片的精确复制,每个分片可以有零个或多个副本。ES中可以有许多相同的分片,其中之一被选择更改索引操作,这种特殊的分片称为主分片。 
当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。

5)全文检索。

全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。 
全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如”你们的激情是因为什么事情来的” 可能会被分词成:“你们“,”激情“,“什么事情“,”来“ 等token,这样当你搜索“你们” 或者 “激情” 都会把这句搜出来。

1.6 ES数据架构的主要概念(与关系数据库Mysql对比)

(1)关系型数据库中的数据库(DataBase),等价于ES中的索引(Index) 
(2)一个数据库下面有N张表(Table),等价于1个索引Index下面有N多类型(Type), 
(3)一个数据库表(Table)下的数据由多行(ROW)多列(column,属性)组成,等价于1个Type由多个文档(Document)和多Field组成。 
(4)在一个关系型数据库里面,schema定义了表、每个表的字段,还有表和字段之间的关系。 与之对应的,在ES中:Mapping定义索引下的Type的字段处理规则,即索引如何建立、索引类型、是否保存原始索引JSON文档、是否压缩原始JSON文档、是否需要分词处理、如何进行分词处理等。 
(5)在数据库中的增insert、删delete、改update、查search操作等价于ES中的增PUT/POST、删Delete、改_update、查GET.

3、ES性能

3.1 性能结果展示

(1)硬件配置: 
CPU 16核 AuthenticAMD 
内存 总量:32GB 
硬盘 总量:500GB 非SSD

(2)在上述硬件指标的基础上测试性能如下: 
1)平均索引吞吐量: 12307docs/s(每个文档大小:40B/docs) 
2)平均CPU使用率: 887.7%(16核,平均每核:55.48%) 
3)构建索引大小: 3.30111 GB 
4)总写入量: 20.2123 GB 
5)测试总耗时: 28m 54s.

3.2 性能esrally工具(推荐)

4、为什么要用ES?

4.1 ES国内外使用优秀案例

1) 2013年初,GitHub抛弃了Solr,采取ElasticSearch 来做PB级的搜索。 “GitHub使用ElasticSearch搜索20TB的数据,包括13亿文件和1300亿行代码”。

2)维基百科:启动以elasticsearch为基础的核心搜索架构。 
3)SoundCloud:“SoundCloud使用ElasticSearch为1.8亿用户提供即时而精准的音乐搜索服务”。 
4)百度:百度目前广泛使用ElasticSearch作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。目前覆盖百度内部20多个业务线(包括casio、云分析、网盟、预测、文库、直达号、钱包、风控等),单集群最大100台机器,200个ES节点,每天导入30TB+数据。

4.2 我们也需要

实际项目开发实战中,几乎每个系统都会有一个搜索的功能,当搜索做到一定程度时,维护和扩展起来难度就会慢慢变大,所以很多公司都会把搜索单独独立出一个模块,用ElasticSearch等来实现。

近年ElasticSearch发展迅猛,已经超越了其最初的纯搜索引擎的角色,现在已经增加了数据聚合分析(aggregation)和可视化的特性,如果你有数百万的文档需要通过关键词进行定位时,ElasticSearch肯定是最佳选择。当然,如果你的文档是JSON的,你也可以把ElasticSearch当作一种“NoSQL数据库”, 应用ElasticSearch数据聚合分析(aggregation)的特性,针对数据进行多维度的分析。

【知乎:热酷架构师潘飞】ES在某些场景下替代传统DB 
个人以为Elasticsearch作为内部存储来说还是不错的,效率也基本能够满足,在某些方面替代传统DB也是可以的,前提是你的业务不对操作的事性务有特殊要求;而权限管理也不用那么细,因为ES的权限这块还不完善。 
由于我们对ES的应用场景仅仅是在于对某段时间内的数据聚合操作,没有大量的单文档请求(比如通过userid来找到一个用户的文档,类似于NoSQL的应用场景),所以能否替代NoSQL还需要各位自己的测试。 
如果让我选择的话,我会尝试使用ES来替代传统的NoSQL,因为它的横向扩展机制太方便了。

5. ES的应用场景是怎样的?

通常我们面临问题有两个:

1)新系统开发尝试使用ES作为存储和检索服务器; 
2)现有系统升级需要支持全文检索服务,需要使用ES。

一线公司ES使用场景:

1)新浪ES 如何分析处理32亿条实时日志 http://dockone.io/article/505 
2)阿里ES 构建挖财自己的日志采集和分析体系 http://afoo.me/columns/tec/logging-platform-spec.html 
3)有赞ES 业务日志处理 http://tech.youzan.com/you-zan-tong-ri-zhi-ping-tai-chu-tan/ 
4)ES实现站内搜索 http://www.wtoutiao.com/p/13bkqiZ.html

6.ES遇到问题怎么办?

1)国外:https://discuss.elastic.co/ 
2)国内:http://elasticsearch.cn/

7.参考:

[1] http://www.tuicool.com/articles/7fueUbb 
[2] http://zhaoyanblog.com/archives/495.html 
[3]《Elasticsearch服务器开发》 
[4]《实战Elasticsearch、Logstash、Kibana》 
[5]《Elasticsearch In Action》 
[6]《某ES大牛PPT》

ElasticSearch入门及核心概念介绍的更多相关文章

  1. Elasticsearch之重要核心概念(cluster(集群)、shards(分配)、replicas(索引副本)、recovery(据恢复或叫数据重新分布)、gateway(es索引的持久化存储方式)、discovery.zen(es的自动发现节点机制机制)、Transport(内部节点或集群与客户端的交互方式)、settings(修改索引库默认配置)和mappings)

    Elasticsearch之重要核心概念如下: 1.cluster 代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的.es的一个概念就是 ...

  2. ElasticSearch安装和核心概念

    1.ElasticSearch安装 elasticsearch的安装超级easy,解压即用(要事先安装好java环境). 到官网 http://www.elasticsearch.org下载最新版的 ...

  3. Elasticsearch 入门,基本概念和操作

    基本概念 Node 与 Cluster Elastic 本质上是一个分布式数据库,允许多台服务器协同工作,每台服务器可以运行多个 Elastic 实例. 单个 Elastic 实例称为一个节点(nod ...

  4. webpack的四个核心概念介绍

    前言 webpack 是一个当下最流行的前端资源的模块打包器.当 webpack 处理应用程序时,它会递归地构建一个依赖关系图(dependency graph),其中包含应用程序需要的每个模块,然后 ...

  5. zookerper入门、核心概念和使用场景

    zookeeper是一个分布式程序的高性能协调服务,提供集中式信息存储服务,数据存储于内存中,类似文件系统的树形结构,高吞吐量和低延时,集群高可靠,基于zookeeper可以实现分布式统一配置中心.分 ...

  6. Apache Maven的入门使用之常用操作以及核心概念介绍(2)

    我们接着上篇文章,来继续介绍Maven中几个核心的概念: POM (Project Object Model) Maven 插件 Maven 生命周期 Maven 依赖管理 Maven 库 POM ( ...

  7. Maven入门-2.Maven一些核心概念介绍

    1.Maven仓库2.Maven坐标3.Maven插件和目标4.Maven生命周期4.1 clean:清理项目4.2 default:构建项目(重要)4.3 site:建立项目站点 1.Maven仓库 ...

  8. Spring Security核心概念介绍

    Spring Security是一个强大的java应用安全管理库,特别适合用作后台管理系统.这个库涉及的模块和概念有一定的复杂度,而大家平时学习Spring的时候也不会涉及:这里基于官方的参考文档,把 ...

  9. ElasticSearch(一)概念介绍及环境搭建

    一.什么是ElasticSearch: Elasticsearch (ES)是一个基于Lucene构建的开源.分布式.RESTful 接口全文搜索引擎.Elasticsearch 还是一个分布式文档数 ...

随机推荐

  1. 系统安全-LDAP

    LDAP服务器 1.目录服务  目录是一个为查询.浏览和搜索而优化的专业分布式数据库,它呈树状结构组织数据,就好像Linux/Unix系统中的文件目录一样.目录数据库和关系数据库不同,它有优异的读性能 ...

  2. webpack打包问题

    最近项目里需要替换一个logo,原先的logo打包后生成的静态文件里有对应的图片,替换了新的的图片打包后并没有生成相应的静态文件,两个图片都在同一个文件目录下,而且图片是直接引入并不会出现打包不到图片 ...

  3. EasyDarwin开源云平台接入海康威视EasyCamera摄像机之快照获取与上传

    本文转自EasyDarwin团队成员Alex的博客:http://blog.csdn.net/cai6811376 EasyCamera开源摄像机拥有获取摄像机实时快照并上传至EasyDarwin云平 ...

  4. 九度OJ 1114:神奇的口袋 (DFS、DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:948 解决:554 题目描述: 有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40.John现在有n个 ...

  5. MFC获取电脑硬盘序列号(附源代码)

    在新建的project里面加入一个类  即:下面一个类  GetHDSerial.cpp <code class="hljs cs has-numbering" style= ...

  6. MySQL常用语句汇总--持续更新(2017-08-10)

    修改表的字段结构: 表:mission_picture,新增字段:content,字段类型:text ALTER TABLE mission_picture ADD content text:

  7. ABAP 动态内标排序

     动态内表怎样排序动态内表怎样排序 动态内表要排序时,因为不知道内表中的字段名字,所以不能直接用SORT table BY field1 field2... 可以使用下面的方法来实现:SORT tab ...

  8. PHP Warning: PHP Startup: Unable to load dynamic library '/usr/lib64/php/modules/redis.so' - /usr/lib64/php/modules/redis.so: undefined symbol: igbinary_serialize in Unknown on line 0

    网上找到两种解决方法, 1.先删除php-pecl-redis,再用pecl install redis 2.安装php-igbinary模块,不过我安装时包冲突了,没有安装成功,所以用了第一种方法

  9. Dispatch Sources(转)

    Dispatch Sources 现代系统通常提供异步接口,允许应用向系统提交请求,然后在系统处理请求时应用可以继续处理自己的事情.Grand Central Dispatch正是基于这个基本行为而设 ...

  10. Linux下配置Objective-C编译环境

    Ubuntu环境下Objective-C编译环境配置参考这里. CentOS环境下Objective-C编译环境配置参考这里. 还在继续探索中.