题目详见:【P3951】小凯的疑惑

首先说明:此题为一道提高组的题。但其实代码并没有提高组的水平。主要考的是我们的推断能力,以及看到题后的分析能力。

分析如下:

证明当k>ab-a-b时,小凯可以准确支付这个物品。

显然,可以列出一个不定方程ma+nb=k,(m n,为未知数)由于m,n是金币个数,所以m>-1,n>-1,

这个不定方程的通解为m=m0+bt,n=n0-at,(仅仅为写法的一种,不过这样写最方便,m0,n0为方程的一组解),

m0+bt>-1,n0-at>-1,化简后有-(m0+1)/b<t<(n0+1)/a,

显然(n0+1)/a-(-(m0+1)/b)=(n0+1)/a+(m0+1)/b=(bn0+b+a+am0)/ab,

又因为bn0+am0=k.所以原式等于(k+a+b)/ab,显然k+a+b>ab,所以原式大于1,所以区间(-(m0+1)/b,(n0+1)/a,)中必有一个整数,t一定存在,所以命题成立。

又可证明当k=ab-a-b时小凯无法支付(大家可以去参考题解,我就不啰嗦了),

所以ab-a-b就是不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。 ——摘自luogu

#include<iostream>
using namespace std;
int main()
{
long long a,b;
cin>>a>>b;
cout<<a*b-a-b;
return ;
}

Luogu [P3951] 小凯的疑惑的更多相关文章

  1. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  2. P3951 小凯的疑惑

    P3951 小凯的疑惑 题解 题意也就是求解不能用 ax+by 表示的最大数 ans(a,b,x,y,都是正整数) 给定 a ( =7 ) ,  b ( =3 ) 我们可以把数轴非负半轴上的数按照a的 ...

  3. 洛谷 P3951 小凯的疑惑 找规律

    目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...

  4. 题解 P3951 小凯的疑惑

    P3951 小凯的疑惑 数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq 分析 两数互质,且有无限个,想到 ...

  5. 2021.07.20 P3951 小凯的疑惑(最大公因数,未证)

    2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代 ...

  6. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  7. 洛谷 P3951 小凯的疑惑(数学)

    传送门:Problem P3951 https://www.cnblogs.com/violet-acmer/p/9827010.html 参考资料: [1]:http://m.blog.sina.c ...

  8. 洛谷 P3951 小凯的疑惑

    题目链接 一开始看到这题,我的内心是拒绝的. 以为是同余类bfs,一看数据1e9,发现只能允许O(1)的算法,数学还不太好,做不出来,其实应该打表找规律. 看到网上的题解,如果两个都必须拿,结果一定是 ...

  9. 洛谷P3951 小凯的疑惑 - 数学 /扩展欧几里得

    传送门 题意:求出a和b不能通过线性组合(即n*a+m*b)得到的最大值: 思路:摘自洛谷: 不妨设 a<b 假设答案为 x 若 x≡m*a ( mod b )(1≤m≤b−1) (mod3)什 ...

随机推荐

  1. [Lintcode]Inorder Successor in Binary Search Tree(DFS)

    题意 略 分析 1.首先要了解到BST的中序遍历是递增序列 2.我们用一个临时节点tmp储存p的中序遍历的下一个节点,如果p->right不存在,那么tmp就是从root到p的路径中大于p-&g ...

  2. Codeforces631C【栈维护+瞎搞】

    题意: 百度. 思路: 如果该查询的R比前面的所有都大,那么前面所有都失效. 那么我先预处理出这些有效的. 那最坏的情况不就是栈里面元素(R)很多 n,n-1,n-2,n-3,n-4而且都是相反排序的 ...

  3. Keras实现MNIST分类

      仅仅为了学习Keras的使用,使用一个四层的全连接网络对MNIST数据集进行分类,网络模型各层结点数为:784: 256: 128 : 10:   使用整体数据集的75%作为训练集,25%作为测试 ...

  4. js转义字符

    \"   \/   \" 例: span = "<span onclick=\"xadmin.open('编辑','\/junyi\/member\/up ...

  5. Codeforces Round #360 (Div. 1)A (二分图&dfs染色)

    题目链接:http://codeforces.com/problemset/problem/687/A 题意:给出一个n个点m条边的图,分别将每条边连接的两个点放到两个集合中,输出两个集合中的点,若不 ...

  6. 【UVA - 136】Ugly Numbers(set)

    Ugly Numbers Descriptions: Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequ ...

  7. JavaScript进阶 - 第7章 JavaScript内置对象

    第7章 JavaScript内置对象 7-1 什么是对象 JavaScript 中的所有事物都是对象,如:字符串.数值.数组.函数等,每个对象带有属性和方法. 对象的属性:反映该对象某些特定的性质的, ...

  8. [Android]XML和JSON的区别

    1.定义介绍 (1).XML定义 扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据.定义数据类型,是一种允 ...

  9. windows 2008 r2或win7安装SP1补丁,安装sqlserver 2012

    说明:安装sql server 2012时,win7和win2008r2系统都需要打sp1补丁. 1.SP1补丁下载地址(建议用迅雷下载): http://download.microsoft.com ...

  10. Xamarin.Form的坑

    首先说到xamarin.Forms的安装,简直是坑+坑+坑,为什么呢,有些坑你完全意想不到,比如说你改名字后报错,比如说上份代码能运行,在这里就不能运行,具体先将坑说说吧 坑1 文件名,动不动就报什么 ...