FFT快速傅里叶变化
纪念人生第一次FFT
前排感谢iamzky,讲解非常详细
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std; const int MAXN=;
class BigNum
{
public:
double r,i;
BigNum(double _r=0.0,double _i=0.0){r=_r;i=_i;}
BigNum operator+(const BigNum T){return BigNum(r+T.r,i+T.i);}
BigNum operator-(const BigNum T){return BigNum(r-T.r,i-T.i);};
BigNum operator*(const BigNum T){return BigNum(r*T.r-i*T.i,r*T.i+i*T.r);};
}; void Brc(BigNum *T,int N)
{
int i,j,k;
for(i=,j=N/;i<N-;i++)
{
if(i<j) swap(T[i],T[j]);
k=N/;
while(j>=k)
{
j-=k;
k>>=;
}
if(j<k) j+=k;
}
} void FFT(BigNum *T,int N,int flag)
{
Brc(T,N);
for(int i=;i<=N;i<<=)
{
BigNum wn(cos(*M_PI/i),flag*sin(*M_PI/i));
for(int j=;j<N;j+=i)
{
BigNum w(,);
for(int k=j;k<j+i/;k++)
{
BigNum u=T[k];
BigNum t=w*T[k+i/];
T[k]=u+t;
T[k+i/]=u-t;
w=w*wn;
}
}
}
if(flag==-)
for(int i=;i<N;i++)
T[i].r/=N;
} string s1,s2;
BigNum A[MAXN],B[MAXN],C[MAXN];
int a[MAXN],b[MAXN],sum[MAXN];
int N; int main()
{
cin>>s1>>s2;
int L1=s1.size();
int L2=s2.size();
for(N=;N<max(L1,L2);N<<=);N<<=;
for(int i=;i<L1;i++) a[L1-i-]=s1[i]-'';
for(int i=;i<L2;i++) b[L2-i-]=s2[i]-'';
for(int i=;i<N;i++) A[i]=BigNum(a[i]);
for(int i=;i<N;i++) B[i]=BigNum(b[i]);
FFT(A,N,);FFT(B,N,);
for(int i=;i<N;i++)C[i]=A[i]*B[i];
FFT(C,N,-);
for(int i=;i<N;i++)sum[i]=C[i].r+0.5;
for(int i=;i<N;i++)
{
sum[i+]+=sum[i]/;
sum[i]%=;
}
int l=L1+L2-;
while(sum[l]==&&l>)l--;
for(int i=l;i>=;i--)
cout<<sum[i];
return ;
}
FFT快速傅里叶变化的更多相关文章
- FFT快速傅里叶模板
FFT快速傅里叶模板…… /* use way: assign : h(x) = f(x) * g(x) f(x):len1 g(x):len2 1. len = 1; while(len < ...
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- 【BZOJ】【2179】FFT快速傅里叶
FFT 做的第二道用到FFT的……好吧其实还是模板题-_-b 百度上说好像分治也能做……不过像FFT这种敲模板的还是省事=.= /*********************************** ...
- BZOJ 2179 FFT快速傅里叶
fft. #include<set> #include<map> #include<ctime> #include<queue> #include< ...
- [Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...
- Luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶_FFT
这其实就是一道裸的FFT 核心思想:把两个数拆成两个多项式用FFT相乘,再反序输出 py解法如下: input() print(int(input())*int(input())) 皮一下hihi f ...
- 洛谷 P1919 【模板】A*B Problem升级版(FFT快速傅里叶)
题目来源 吐槽下P3803都是紫题... 真心好写,本想一遍过的...但是 我真是太菜了... #include<bits/stdc++.h> using namespace std; ; ...
- luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶)
模板 嗯 做多项式乘法,进位 没了 #include<cmath> #include<cstdio> #include<cstring> #include<a ...
- P1919 【模板】A*B Problem升级版(FFT快速傅里叶)
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出格式: 输出一 ...
随机推荐
- POJ 2411 Mondriaan's Dream 【状压Dp】 By cellur925
题目传送门 这道题暑假做的时候太模糊了,以前的那篇题解大家就别看了==.今天再复习状压感觉自己当时在写些什么鸭.... 题目大意:给你一个\(n\)*\(m\)的棋盘和许多\(1*2\)的骨牌,骨牌可 ...
- JQuery Easyui/TopJUI 创建多级联动下拉框(纯HTML实现!!!)
JQuery Easyui/TopJUI 创建多级联动下拉框(纯HTML实现!!!) 效果展示: 代码如下: <form data-toggle="topjui-form"& ...
- 利用Hough变换识别图像中的直线
引入 近期看到2015年数学建模A题太阳影子定位中的第四问,需要根据附件中视频里的直杆的太阳影子的变化确定拍摄地点.其实确定拍摄地点这个问题并不是十分困难,因为有前三问的铺垫,我们已经得出了太阳影子长 ...
- 程序员/开发人员的真实生活 (Gif 多图)
往工作环境上传东西的时候: 没保存,就关了 IDE 的时候: 凌晨三点调代码的时候: 正则表达式返回了了预期结果的时候: 当老板告诉我,我那一直负责的模块失效了的时候: 刚修复了Bug,我给老板演示的 ...
- BZOJ 1116: [POI2008]CLO 并查集
成立时当且仅当每个联通块都有环存在.一个连通块若有m个点,则必有多于m条有向边,可用并查集来维护. #include<cstdio> #include<iostream> #d ...
- NET Core 2.0 自定义
ASP.NET Core 2.0 自定义 _ViewStart 和 _ViewImports 的目录位置 在 ASP.NET Core 里扩展 Razor 查找视图目录不是什么新鲜和困难的事情,但 _ ...
- stm32的低功耗模式:
一.待机模式.待机模式是低功耗中最低功耗的,内部电压调节电路被关闭, HSE.HIS.PLL被关闭:进入待机模式后,SRAM和寄存器的内容将丢失. (CPU停止,外设停止,RAM的数据寄存器的内容 ...
- Tensorflow版Faster RCNN源码解析(TFFRCNN) (2)推断(测试)过程不使用RPN时代码运行流程
本blog为github上CharlesShang/TFFRCNN版源码解析系列代码笔记第二篇 推断(测试)过程不使用RPN时代码运行流程 作者:Jiang Wu 原文见:https://hom ...
- [luogu 1967]货车运输
货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情 ...
- Java 2 个 List 集合数据求并、补集操作
开发过程中,我们可能需要对 2 个 或多个 List 集合中的数据进行处理,比如多个 List 集合数据求 相同元素,多个 List 集合数据得到只属于本身的数据,如图示: 这里写图片描述 这里以 2 ...