mod性质 学习笔记
mod性质小结
\(a\equiv b(\mod m)\) $ \rightarrow \( \)a-b=k*m,k\in Z$
\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(a\pm c\equiv b\pm d(\mod m)\)
\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(ac\equiv bd(\mod m)\)
\(a\equiv b(\mod m)\) \(\rightarrow\) \(a^n\equiv b^n(\mod m),n>=0\)
\(ad\equiv bd(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod \frac m{gcd(d,m)}),d\neq 0\)
\(a\equiv b(\mod md)\) \(\rightarrow\) \(a\equiv b(\mod m)\)
\(a\equiv b(\mod m)\)且\(a\equiv b(\mod n)\) \(\rightarrow\) \(a\equiv b(\mod lcm(n,m))\)
\(a\equiv b(\mod nm)\) \(\rightarrow\) \(a\equiv b(\mod m)\)且\(a\equiv b(\mod n),n\perp m\)
继续拆下去可以变成
\(a\equiv b(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod p^{m_p})\)
其中\(p\)为\(m\)分解出来的质因数,\(m_p\)为该质因数有多少个
mod性质 学习笔记的更多相关文章
- Miller_Rabbin&&Pollard_Rho 学习笔记
占坑,待填 I Intro 首先我们考虑这样一个问题 给定一个正整数\(p(p<=1e8)\),请判断它是不是质数 妈妈我会试除法! 于是,我们枚举$ \sqrt p$ 以内的所有数,就可以非常 ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- Hash学习笔记
啊啊啊啊,这篇博客估计是我最早的边写边学的博客了,先忌一忌. 本文章借鉴与一本通提高篇,但因为是个人的学习笔记,因此写上原创. 目录 谁TM边写边学还写这玩意? 后面又加了 Hash Hash表 更多 ...
- 我的Android进阶之旅------>Android中编解码学习笔记
编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等 ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- 「学习笔记」Treap
「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...
随机推荐
- ValidForm验证表单
在做项目时,要求熟悉项目中验证表单的插件,所以学习一下validForm这个插件 http://validform.rjboy.cn/document.html#validformObject
- 关于removeFromSuperview
关于 - (void)removeFromSuperview 苹果官网API中是这么描述的: Unlinks the view from its superview and its window, ...
- Roman Numeral Converter-freecodecamp算法题目
Roman Numeral Converter 1.要求 将给定的数字转换成罗马数字 所有返回的罗马数字都应该是大写形式 2.思路 分别定义个位.十位.百位.千位的对应罗马数字的数组 用Math.fl ...
- vs2005无法附加到进程 系统找不到文件
用管理员身份打开vs2005. 注意配置.
- NOIP模拟赛 混合图
[题目描述] Hzwer神犇最近又征服了一个国家,然后接下来却也遇见了一个难题. Hzwer的国家有n个点,m条边,而作为国王,他十分喜欢游览自己的国家.他一般会从任意一个点出发,随便找边走,沿途欣赏 ...
- poj3525 Most Distant Point from the Sea
题目描述: vjudge POJ 题解: 二分答案+半平面交. 半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零. 我的eps值取的是$10^{-12}$,3 ...
- 如何使用jmeter做接口测试
1.传参:key=value形式 2.传参:json格式 3.jmeter上传文件 4.jmeter传cookie 或者使用 HTTP Cookie管理器
- python入门:输出1-10的所有数(自写)
#!/usr/bin/env python # -*- coding:utf-8 -*- #输出1-10的所有数(自写) """ 导入time库,给kaishi赋值为数字 ...
- kafka的初认识
学习地址: http://www.jikexueyuan.com/course/1716_3.html?ss=1 http://www.jikexueyuan.com/course/kafka/ zo ...
- python3.7 内置函数整理
#!/usr/bin/env python __author__ = "lrtao2010" #python3.7 内置函数整理 #abs(x) #返回数字的绝对值. 参数可以是整 ...