mod性质小结

\(a\equiv b(\mod m)\) $ \rightarrow \( \)a-b=k*m,k\in Z$

\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(a\pm c\equiv b\pm d(\mod m)\)

\(a\equiv b且c\equiv d(\mod m)\) \(\rightarrow\) \(ac\equiv bd(\mod m)\)

\(a\equiv b(\mod m)\) \(\rightarrow\) \(a^n\equiv b^n(\mod m),n>=0\)

\(ad\equiv bd(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod \frac m{gcd(d,m)}),d\neq 0\)

\(a\equiv b(\mod md)\) \(\rightarrow\) \(a\equiv b(\mod m)\)

\(a\equiv b(\mod m)\)且\(a\equiv b(\mod n)\) \(\rightarrow\) \(a\equiv b(\mod lcm(n,m))\)

\(a\equiv b(\mod nm)\) \(\rightarrow\) \(a\equiv b(\mod m)\)且\(a\equiv b(\mod n),n\perp m\)
继续拆下去可以变成
\(a\equiv b(\mod m)\) \(\rightarrow\) \(a\equiv b(\mod p^{m_p})\)
其中\(p\)为\(m\)分解出来的质因数,\(m_p\)为该质因数有多少个

mod性质 学习笔记的更多相关文章

  1. Miller_Rabbin&&Pollard_Rho 学习笔记

    占坑,待填 I Intro 首先我们考虑这样一个问题 给定一个正整数\(p(p<=1e8)\),请判断它是不是质数 妈妈我会试除法! 于是,我们枚举$ \sqrt p$ 以内的所有数,就可以非常 ...

  2. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  3. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  4. Hash学习笔记

    啊啊啊啊,这篇博客估计是我最早的边写边学的博客了,先忌一忌. 本文章借鉴与一本通提高篇,但因为是个人的学习笔记,因此写上原创. 目录 谁TM边写边学还写这玩意? 后面又加了 Hash Hash表 更多 ...

  5. 我的Android进阶之旅------>Android中编解码学习笔记

    编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等 ...

  6. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  7. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  8. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  9. 「学习笔记」Treap

    「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...

随机推荐

  1. Vmware 安装CentOS7时连不上网问题的解决

    在VmWare 上安装Centos7时,装好vmware后还是连不上网,通过查找资料原来是因为有线网卡没有激活,默认centos和redhat7都是不启用有线网卡的,要么手动开启,要么安装时直接启用! ...

  2. CodePlus #4 最短路

    题目传送门 北极为什么会有企鹅啊,而且北纬91°在哪啊? 关键在建图 因为任意两个城市间都可以互相到达,再加上还有"快捷通道",光是建图就已经\(\rm{T}\)了-- 但这题给了 ...

  3. iOS监听电话来电、挂断、拨号等

    以下,来讲解在app内如何调用打电话功能和监听电话来电.挂断.拨号等功能. 简单的UI布局: 首先,先实现拨打电话的功能,以便于后续测试: // 拨打电话 - (IBAction)dialingBut ...

  4. 【状态压缩dp】1195: [HNOI2006]最短母串

    一个清晰的思路就是状压dp:不过也有AC自动机+BFS的做法 Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T ...

  5. 如何用纯 CSS 创作一个方块旋转动画

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/gjgyWm 可交互视频 ...

  6. jvm架构以及Tomcat优化

      JVM栈 JVM栈是线程私有的,每个线程创建的同时都会创建JVM栈,JVM栈中存放的为当前线程中局部基本类型的变量(java中定义的八种基本类型:boolean.char.byte.short.i ...

  7. SolrCloud下DIH实践

    创建Collection 在/usr/local/solrcloud/solr/server/solr文件夹下创建coreTest文件夹 将/usr/local/solrcloud/solr/serv ...

  8. centos7 安装显卡驱动方法

    方法一: 首先需要添加一个第三方的源ELRepo.这个源支持RED HAT系的Linux系统,主要是提供一些硬件的驱动程序.这个源的主页如下: http://elrepo.org/tiki/tiki- ...

  9. Linux学习-什么是登录档

    CentOS 7 登录档简易说明 登录档的重要性 为什么说登录文件很重要, 解决系统方面的错误: 用 Linux 这么久了,你应该偶而会发现系统可能会出现一些错误,包括硬件捉不到或者是某些系 统服务无 ...

  10. UIAutomator输入中文

    之前一直是英文的测试环境,包括手机也是英文的,app也是英文的,涉及不到中文输入法的东西.但现在在写中文的app,所以需要输入中文.看到网上的解决办法如下: 下载https://github.com/ ...