luogu 3708 koishi的数学题 递推 线性筛
题目链接
题意
输入一个整数\(n\)\((n\leq 1e6)\),设\(f(x)=\sum_{i=1}^n x\mod i\),你需要输出\(f(1),f(2)...,f(n)\).
输入输出格式
输入格式:
一个正整数n。
输出格式:
一行用空格分隔的n个整数\(f(1),f(2)...f(n)\).
输入输出样例
输入样例#1:
10
输出样例#1:
9 16 22 25 29 27 29 24 21 13
思路
列表
\i 1 2 3 4 5 6 7 8 9 10
x mod i\
x\
1 0 1 1 1 1 1 1 1 1 1
2 0 0 2 2 2 2 2 2 2 2
3 0 1 0 3 3 3 3 3 3 3
4 0 0 1 0 4 4 4 4 4 4
5 0 1 2 1 0 5 5 5 5 5
6 0 0 0 2 1 0 6 6 6 6
7 0 1 1 3 2 1 0 7 7 7
8 0 0 2 0 3 2 1 0 8 8
9 0 1 0 1 4 3 2 1 0 9
10 0 0 1 2 0 4 3 2 1 0
递推
在已经算出了\(f(x)\)的基础上,怎么得到\(f(x+1)\)呢?
因为$$(x+1)\mod i = ((x\mod i)+1)\mod i=
\begin{eqnarray}
\begin{cases}
(x\mod i)+1,&i\nmid (x+1)\cr
0, &i\mid (x+1)
\end{cases}
\end{eqnarray}$$
所以\(f(x+1)=f(x)+n-1-g(x+1)\),\(n-1\)的含义为下一行比上一行每个多\(1\),\(g(x+1)\)的含义为贡献本该算作\(0\)却算作了\(i\)因而多加了的部分,即\(\sum_{i\mid (x+1)}i\).
\(i=1\)的时候特殊处理一下。
线性筛
线性筛求一下约数和即可解决。
此处具体讲解可参见 积性函数的性质及证明 + 线性筛 ——Wubaizhe
Code
#include <bits/stdc++.h>
#define maxn 1000010
using namespace std;
typedef long long LL;
int prime[maxn], mx[maxn], sum[maxn], n, tot;
LL d[maxn], ans[maxn];
bool vis[maxn];
void init() {
d[1] = 0;
for (int i = 2; i <= n; ++i) {
if (!vis[i]) {
prime[tot++] = i;
d[i] = sum[i] = i+1;
mx[i] = i;
}
for (int j = 0; j < tot; ++j) {
if (prime[j] * i > n) break;
vis[prime[j] * i] = true;
if (i % prime[j] == 0) {
mx[i * prime[j]] = mx[i] * prime[j];
sum[i * prime[j]] = sum[i] + mx[i * prime[j]];
d[i * prime[j]] = d[i] / sum[i] * sum[i * prime[j]];
break;
}
mx[i * prime[j]] = prime[j];
sum[i * prime[j]] = prime[j] + 1;
d[i * prime[j]] = d[i] * d[prime[j]];
}
}
for (int i = 2; i <= n; ++i) --d[i];
}
int main() {
scanf("%d", &n);
init();
ans[1] = n-1; printf("%lld", ans[1]);
for (int i = 2; i <= n; ++i) {
ans[i] = ans[i-1] + n-1 - d[i];
printf(" %lld", ans[i]);
}
printf("\n");
return 0;
}
luogu 3708 koishi的数学题 递推 线性筛的更多相关文章
- CJOJ 2255 【NOIP2016】组合数问题 / Luogu 2822 组合数问题 (递推)
CJOJ 2255 [NOIP2016]组合数问题 / Luogu 2822 组合数问题 (递推) Description 组合数\[C^m_n\]表示的是从n个物品中选出m个物品的方案数.举个例子, ...
- Luogu P2327 [SCOI2005]扫雷【递推/数学】By cellur925
题目传送门 推了好久啊.看来以后要多玩扫雷了qwq. 其实本题只有三种答案:0.1.2. 对于所有第一列,只要第一个数和第二个数确定后,其实整个数列就确定了,我们可以通过这个递推式得出 sec[i-] ...
- * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)
题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...
- LUOGU P3708 koishi的数学题
传送门 解题思路 发现当x+1时,有的x%i会+1,有的会变成0,而变成0的说明是x的约数,就可以nlogn预处理出每个约数的贡献,然后每次用n-约数. 代码 #include<iostream ...
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
- [NOI2017]泳池——概率DP+线性递推
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技 ...
- CH定理与线性递推
才发觉自己数学差的要死,而且脑子有点浑浑噩噩的,学了一个晚上才学会 如果说的有什么不对的可以在下面嘲讽曲明 以下无特殊说明时,默认方阵定义在实数域上,用\(|A|\)表示\(A\)的行列式 特征值与特 ...
- luogu题解 P1707 【刷题比赛】矩阵加速递推
题目链接: https://www.luogu.org/problemnew/show/P1707 分析: 洛谷的一道原创题,对于练习矩阵加速递推非常不错. 首先我们看一下递推式: \(a[k+2]= ...
- 求解线性递推方程第n项的一般方法
概述 系数为常数,递推项系数均为一次的,形如下面形式的递推式,称为线性递推方程. \[f[n]=\begin{cases} C &n\in Value\\ a_1 f[n-1]+a_2 f[n ...
随机推荐
- iBatis自动生成工具Abator
https://blog.csdn.net/k_scott/article/details/8281837 ###首先创建数据库表,然后根据数据库表,生成相应的实体.及其配置文件 https://ww ...
- 使用CAShapeLayer实现复杂的View的遮罩效果
一.案例演示 最近在整理一个聊天的项目的时候,发送图片的时候,会有一个三角的指向效果,指向这张图片的发送者.服务端返回给我们的图片只是一张矩形的图片,我们如何把一张矩形的图片或者View,加上一层自定 ...
- 测试 code style
c++ #include <iostream> int main(int argc, char *argv[]) { /* An annoying "Hello World&qu ...
- 2018 noip 提高组初赛参考答案
这里有pdf文件:戳这儿
- pip 常用命令
列出已安装包 pip freeze or pip list 安装包 在线安装包 pip install <package name> 或 pip install -r requiremen ...
- Python开发环境与开发软件的安装
Python开发的必要因素: 开发软件:PyCharm 社区版 PyCharm安装过程: 首先去官网下载:(链接为: https://www.jetbrains.com/pycharm/downlo ...
- 通过代码链接ftp上传下载删除文件
因为我的项目是Maven项目,首先要导入一个Maven库里的包:pom.xml <dependency> <groupId>com.jcraft</ ...
- Post页面爬取失败__编码问题
python3爬取Post页面时, 报以下错误 "POST data should be bytes or an iterable of bytes. It cannot be of typ ...
- 有限状态机(FSM)的设计与实现
有限状态机(FSM)是表示有限个状态及在这些状态之间的转移和动作等行为的数学模型,在计算机领域有着广泛的应用.通常FSM包含几个要素:状态的管理.状态的监控.状态的触发.状态触发后引发的动作.本文主要 ...
- HDU 5399 数学 Too Simple
题意:有m个1~n的映射,而且对于任意的 i 满足 f1(f2(...fm(i))) = i 其中有些映射是知道的,有些是不知道的,问一共有多少种置换的组合. 分析: 首先这些置换一定是1~n的一个置 ...