1002. A+B for Polynomials (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output

3 2 1.5 1 2.9 0 3.2

题意:合并多项式
思路:简单的水题,不过注意细节,譬如合并之后某一项的系数为0,那么这一项不作考虑,需要去除。
若合并之后多项式值为0,直接输出0就行了(题目貌似也没特别说明这个情况该输出什么,坑)。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<set>
#include<queue>
#include<cmath>
#include<vector>
#include<bitset>
#include<string>
using namespace std;
const int N_MAX = +;
struct poly {
int exp;
double coe;
bool operator <(const poly&b) const{
return exp < b.exp;
}
};
poly P1[N_MAX],P2[N_MAX],P[N_MAX];
int k1, k2;
int main() {
scanf("%d",&k1);
for (int i = ; i < k1;i++) {
scanf("%d%lf",&P1[i].exp,&P1[i].coe);
}
scanf("%d",&k2);
for (int i = ; i < k2;i++) {
scanf("%d%lf",&P2[i].exp,&P2[i].coe);
} sort(P1, P1 + k1);
sort(P2, P2 + k2); int t1 = , t2 = ,t=;
while (t1<k1&&t2<k2) {
double tmp=;//不为0即可
if (P1[t1].exp == P2[t2].exp) {
tmp= P1[t1].coe + P2[t2].coe;
if (tmp) {//系数不为0,则要算进去
P[t].exp = P1[t1].exp;
P[t].coe = P1[t1].coe + P2[t2].coe;
}
t1++;
t2++;
}
else if (P1[t1].exp<P2[t2].exp) {//那个指数小用哪个
P[t].exp = P1[t1].exp;
P[t].coe = P1[t1].coe;
t1++;
}
else if (P1[t1].exp>P2[t2].exp) {//那个指数小用哪个
P[t].exp = P2[t2].exp;
P[t].coe = P2[t2].coe;
t2++;
}
if(tmp)t++;
} while (t1 < k1) {
P[t].exp = P1[t1].exp;
P[t].coe = P1[t1].coe;
t1++;
t++;
}
while (t2 < k2) {
P[t].exp = P2[t2].exp;
P[t].coe = P2[t2].coe;
t2++;
t++;
} if (t) {
printf("%d ", t);
for (int i = ; i < t; i++) {
printf("%d %.1f%c", P[t - i - ].exp, P[t - i - ].coe, i + == t ? '\n' : ' ');
}
}
else printf("%d\n",t); }

PAT 甲级1002 A+B for Polynomials (25)的更多相关文章

  1. PAT甲级 1002 A+B for Polynomials (25)(25 分)

    1002 A+B for Polynomials (25)(25 分) This time, you are supposed to find A+B where A and B are two po ...

  2. 【PAT】1002. A+B for Polynomials (25)

    1002. A+B for Polynomials (25) This time, you are supposed to find A+B where A and B are two polynom ...

  3. PAT 甲级 1002 A+B for Polynomials (25 分)

    1002 A+B for Polynomials (25 分) This time, you are supposed to find A+B where A and B are two polyno ...

  4. 甲级1002 A+B for Polynomials (25)

    题目描述: This time, you are supposed to find A+B where A and B are two polynomials. Input Each input fi ...

  5. PAT 甲级 1002 A+B for Polynomials

    https://pintia.cn/problem-sets/994805342720868352/problems/994805526272000000 This time, you are sup ...

  6. PAT Advanced 1002 A+B for Polynomials (25 分)(隐藏条件,多项式的系数不能为0)

    This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...

  7. PAT甲级——1002 A+B for Polynomials

    PATA1002 A+B for Polynomials This time, you are supposed to find A+B where A and B are two polynomia ...

  8. 【PAT甲级】1009 Product of Polynomials (25 分)

    题意: 给出两个多项式,计算两个多项式的积,并以指数从大到小输出多项式的指数个数,指数和系数. trick: 这道题数据未知,导致测试的时候发现不了问题所在. 用set统计非零项时,通过set.siz ...

  9. PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642

    PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642 题目描述: This time, you are suppos ...

随机推荐

  1. alibaba druid监控页面的使用配置

    一.Maven中添加Durid连接池依赖 <!-- druid连接池 --> <dependency> <groupId>com.alibaba</group ...

  2. SDWebImage解析

    SDWebImage托管在github上.https://github.com/rs/SDWebImage 这个类库提供一个UIImageView类别以支持加载来自网络的远程图片.具有缓存管理.异步下 ...

  3. 解决Windows 与Mac 双系统下的蓝牙设备共用的问题

    不知道有多少人和我一样用的蓝牙鼠标或者键盘,有的话应该都会遇到同一个问题:即在一个系统下配好对后在另一个系统必须重新配对才能使用,很是麻烦.还要将蓝牙设备进入发现模式,OS下搜索,连接....终于昨天 ...

  4. 【动态规划】bzoj1939: [Croatian2010] Zuma

    隐约记得类似的一道JSOI祖玛……然后好像这题不能够把珠子合并成一段?或许是因为这里珠子碰在一起之后可以不消除? Description 有一行 N 个弹子,每一个都有一个颜色.每次可以让超过 K 个 ...

  5. 素材网站——mokuge

  6. Docker 自动运行Nginx容器

    Dockerfile文件如下: FROM ubuntu #基础镜像 RUN apt-get update #更新apt RUN apt-get -y install nginx #安装nginx VO ...

  7. php过滤html标签

    <?php function kill_html($str){ //清除HTML标签 $st=-1; //开始 $et=-1; //结束 $stmp=array(); $stmp[]=" ...

  8. oop中 限制文件类型和大小

    <?php /** * Created by IntelliJ IDEA. * User: jiabinwang * Date: 7/5/18 * Time: 8:46 PM */ namesp ...

  9. Aizu 2450 Do use segment tree 树链剖分

    题意: 给出一棵\(n(1 \leq n \leq 200000)\)个节点的树,每个节点有一个权值. 然后有\(2\)种操作: \(1 \, a \, b \, c\):将路径\(a \to b\) ...

  10. UVa 1309 DLX Sudoku

    16×16的数独. 看白书学的DLX,有些细节还有待消化,贴个模板先. #include <cstdio> #include <cstring> #include <al ...