主要包括两个SPI设备步骤:
register_chrdev
spi_register_driver
关键点1:
spi_board_info
可以去已经运行的板子下面找例子:
/sys/bus/spi/drivers
已辰汉电子MX27 MDK 开发板为例:
在/sys/bus/spi/drivers目录:lcd_spi pmic_spi

对应的:mx27mdk27v0.c文件中定义如下:

static struct spi_board_info mxc_spi_board_info[] __initdata = {
{
.modalias = "pmic_spi",
.irq = IOMUX_TO_IRQ(MX27_PIN_TOUT),
.max_speed_hz = 4000000,
.bus_num = 2,
.chip_select = 0,
},
{
.modalias = "lcd_spi",
.max_speed_hz = 1000000,
.bus_num = 1,
.chip_select = 0,
},
};

spi_register_board_info(mxc_spi_board_info,
ARRAY_SIZE(mxc_spi_board_info));
问题:
1. spi_register_board_info函数与 mxc_spi_probe 调用的先后关系?
2 . mxc_spi_board_info 结构体变量 irq 的意义?
3. 在int spi_sync(struct spi_device *spi, struct spi_message *message)
{
DECLARE_COMPLETION_ONSTACK(done);
int status;
message->complete = spi_complete;
message->context = &done;
status = spi_async(spi, message);
if (status == 0)
wait_for_completion(&done);
message->context = NULL;
return status;
}
中有wait_for_completion(&done); 当进入到函数
spi_async --> mxc_spi_transfer 内也有 INIT_COMPLETION(master_drv_data->xfer_done);

wait_for_completion(&master_drv_data->xfer_done);
在mxc_spi_isr函数中 complete(&master_drv_data->xfer_done)
那么在主函数中wait_for_completion(&done); 的done 什么时候被wait到?

答案:还有个spi_bitbang.c bitbang_work函数中处理 m->complete(m->context);
spi驱动中还有一处研究点,其spi发送是通过:
queue_work(bitbang->workqueue, &bitbang->work);
设定的。值得借鉴.

主要包括两个SPI设备,at45db321d和mcp2515,一个是串行的dataflash,一个是can总线设备芯片。前者对于我们来说非常重要,我们可以借助该设备对uboot和kernel以及根文件系统进行更新。
预备知识:设备和驱动是如何匹配的?系统的热插拔是如何实现的?
首先一点,设备和驱动是严格区分的,设备是设备,驱动是驱动,设备通过struct device来定义,当然用户也可以将该结构体封装到自己定义的device结构体中,例如,struct platform_device,这是我们采用platform_bus_type总线的设备定义的结构体形式:
include/linux/platform_device.h文件中:
struct platform_device {
const char * name;
u32 id;
struct device dev;
u32 num_resources;
struct resource * resource;
};
只要是9260的外围模块,就像IIC硬件控制器,SPI硬件控制器,都被完全的定义成这种结构体的格式,这种结构体主要包含了硬件资源和名称,硬件资源分为寄存器和IRQ两种。platform_device通过向内核注册struct device dev这个结构体来告诉内核加载这个设备,
方法就是 device_register(&platform_device->dev)
内核不关心你使用的是platform_device还是spi_device,内核只关心你的struct device结构体,内核通过这个struct device结构体自然能够顺藤摸瓜找到你是platform_device还是spi_device,这就是linux最引以为傲的contian_of()大法。
驱动通过struct driver这个结构体来定义,与struct device一致,你也可以用自己的结构体去封装:例如,struct platform_driver。
include/linux/platform_device.h文件中:
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
与device一致,应用程序通过driver_register(&platform_driver->driver)向内核中注册你当前的驱动,而内核不关心你封装成的结构,而内核搜索的方法还是同样的contain_of大法。

系统如何将这两者匹配上的?而不会将iic的设备加载到spi的驱动上面?不会将这个iic设备的驱动加载到那个iic设备上,设备和驱动之间是如何联系的?总线,这就是总线的作用!
include/linux/device.h文件中有总线类型的定义。
struct bus_type {
const char * name;
struct subsystem subsys;
struct kset drivers;
struct kset devices;
struct klist klist_devices;
struct klist klist_drivers;
struct blocking_notifier_head bus_notifier;
struct bus_attribute * bus_attrs;
struct device_attribute * dev_attrs;
struct driver_attribute * drv_attrs;
int (*match)(struct device * dev, struct device_driver * drv);
int (*uevent)(struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
int (*probe)(struct device * dev);
int (*remove)(struct device * dev);
void (*shutdown)(struct device * dev);
int (*suspend)(struct device * dev, pm_message_t state);
int (*suspend_late)(struct device * dev, pm_message_t state);
int (*resume_early)(struct device * dev);
int (*resume)(struct device * dev);
};
这个总线设备中最重要的可能是match成员,由于我们一般很少去建立一个新的总线,所以我们很少涉及总线的编程,我们就只关注我们所关注的。
总线如何将两者关联起来,热插拔大家知道吧,当一个设备被通过device_register注册到内核中时,会导致一个热插拔事件产生,系统会遍历该总线上的所有驱动程序,调用bus的match算法,来寻找与该设备相匹配的驱动程序,当一个驱动注册到内核的时候,处理过程与此相似(这是我理解的阿,大家批评指正),而一般的macth算法都比较简单,例如platform_bus的匹配算法就很简单,就是比较platform_device和platform_driver的name成员,如果匹配成功,就加载相应的设备或者驱动!这就完成了一个连接的过程。。。

那么这两种设备驱动中最重要的类型在linux中如何表现出来,那我们就有必要介绍一下从2.6开始实现的sys文件系统了,
/sys/bus $ cat /etc/fstab
proc /proc proc defaults 0 0
devpts /dev/pts devpts defaults 0 0
tmpfs /dev/shm tmpfs defaults 0 0
sysfs /sys sysfs defaults 0 0
/dev/mtdblock2 /mnt/flash2 yaffs defaults 0 0
加载这个文件系统对于我们分析设备模型是非常有好处的。
sys文件夹下一般有如下的目录:
/sys $ ls -al
drwxr-xr-x 10 root root 0 Jan 1 1970 .
drwxrwxrwx 11 1000 tao 4096 May 22 06:56 ..
drwxr-xr-x 7 root root 0 Oct 27 14:09 block
drwxr-xr-x 8 root root 0 Jan 1 1970 bus
drwxr-xr-x 21 root root 0 Jan 1 1970 class
drwxr-xr-x 4 root root 0 Jan 1 1970 devices
drwxr-xr-x 2 root root 0 Jan 1 1970 firmware
drwxr-xr-x 2 root root 0 Jan 1 1970 fs
drwxr-xr-x 2 root root 0 Jan 1 1970 kernel
drwxr-xr-x 22 root root 0 Oct 27 14:10 module
block是由于历史原因形成的block设备的文件夹。我们关心的是bus文件夹。
我们以spi设备为例:spi部分要包括两种设备,一种是platform_device,一种是spi_device。
在arch/arm/mach-at91/at91sam9260_device.c文件中,定义的SPI硬件控制模块设备,这我们不需要关心。
还有一种是spi_device,定义在arch/arm/mach-at91/board-sam9260ek.c文件中,这就是我们的dataflash和mcp2515设备,
所以如何设备加载成功的话,在bus下面的每个目录里面,都存在devices和drivers两个文件夹,分别对应设备和文件。
/sys/bus/platform/devices $ ls -al
drwxr-xr-x 2 root root 0 Oct 27 16:01 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
lrwxrwxrwx 1 root root 0 Oct 27 16:01 at91_i2c -> ../../../devices/platform/at91_i2c
lrwxrwxrwx 1 root root 0 Oct 27 16:01 at91_nand -> ../../../devices/platform/at91_nand
lrwxrwxrwx 1 root root 0 Oct 27 16:01 at91_ohci -> ../../../devices/platform/at91_ohci
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_spi.0 -> ../../../devices/platform/atmel_spi.0
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_spi.1 -> ../../../devices/platform/atmel_spi.1
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_usart.0 -> ../../../devices/platform/atmel_usart.0
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_usart.1 -> ../../../devices/platform/atmel_usart.1
lrwxrwxrwx 1 root root 0 Oct 27 16:01 atmel_usart.2 -> ../../../devices/platform/atmel_usart.2
lrwxrwxrwx 1 root root 0 Oct 27 16:01 macb -> ../../../devices/platform/macb
驱动
/sys/bus/platform/drivers/atmel_spi $ ls -al
drwxr-xr-x 2 root root 0 Jan 1 1970 .
drwxr-xr-x 8 root root 0 Jan 1 1970 ..
lrwxrwxrwx 1 root root 0 Oct 27 16:10 atmel_spi.0 -> ../../../../devices/platform/atmel_spi.0
lrwxrwxrwx 1 root root 0 Oct 27 16:10 atmel_spi.1 -> ../../../../devices/platform/atmel_spi.1
--w------- 1 root root 4096 Oct 27 16:10 bind
--w------- 1 root root 4096 Oct 27 16:10 unbind
如果出现上面的这个情况,说明你的设备(两路spi总线)和驱动都加载成功了,如果你的devices下面没有spi.0设备和spi.1设备的话,说明
board-sam9260ek.c文件中的这个函数出错:
static void __init ek_board_init(void)
{
/* Serial */
at91_add_device_serial();
/* USB Host */
at91_add_device_usbh(&ek_usbh_data);
/* USB Device */
at91_add_device_udc(&ek_udc_data);
/* SPI */
at91_add_device_spi(ek_spi_devices, ARRAY_SIZE(ek_spi_devices));
/* NAND */
at91_add_device_nand(&ek_nand_data);
/* Ethernet */
at91_add_device_eth(&ek_macb_data);
/* MMC */
at91_add_device_mmc(0, &ek_mmc_data);
/* I2C */
at91_add_device_i2c();
}
这里是设备注册的地方,我们还应该在下面这个目录下看到这两个文件。
/sys/bus/spi/devices $ ls -al
drwxr-xr-x 2 root root 0 Oct 27 14:09 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
lrwxrwxrwx 1 root root 0 Oct 27 14:09 spi0.1 -> ../../../devices/platform/atmel_spi.0/spi0.1
lrwxrwxrwx 1 root root 0 Oct 27 14:09 spi1.0 -> ../../../devices/platform/atmel_spi.1/spi1.0
这两个链接说明我们的两个spi设备注册都被接受了,剩下来就是驱动的问题。有人看不懂这个sys文件系统的层次关系,其实这里比较好说明,就是spi0.1是atmel_spi.0设备的子设备嘛,很好理解的。
驱动:
platform_driver驱动:
/sys/bus/platform/drivers $ ls -al
drwxr-xr-x 8 root root 0 Jan 1 1970 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
drwxr-xr-x 2 root root 0 Jan 1 1970 at91_i2c
drwxr-xr-x 2 root root 0 Jan 1 1970 at91_nand
drwxr-xr-x 2 root root 0 Jan 1 1970 at91_ohci
drwxr-xr-x 2 root root 0 Oct 27 16:10 atmel_spi
drwxr-xr-x 2 root root 0 Jan 1 1970 atmel_usart
drwxr-xr-x 2 root root 0 Jan 1 1970 macb
我们可以看到这个驱动只有一个atmel_spi,这个驱动是在哪加载的?
driver/spi/atmel_spi.c文件加载的。
spi_driver驱动:
/sys/bus/spi/drivers $ ls -al
drwxr-xr-x 4 root root 0 Oct 27 14:10 .
drwxr-xr-x 4 root root 0 Jan 1 1970 ..
drwxr-xr-x 2 root root 0 Oct 27 14:10 mcp2515
drwxr-xr-x 2 root root 0 Oct 27 14:09 mtd_dataflash
这是我们加载的两个驱动,说明驱动也加载正常了。
下面我们来说说我们遇到的问题吧。
在设备和驱动都加载正常之后,出现与dataflash设备通信不上的情况,驱动加载的时候,读取芯片的状态字读出是0xff,说明工作不正常,动用逻辑分析仪监控spi总线的通信,意外的发现,sck信号和cs信号正常,但是mosi无信号输出,开始觉得可能是spi总线适配器有问题,后来仔细观察原理图之后,发现dataflash和mmc/sd是使用同样的io口的,即pa0,pa1,pa2,而我的内核配置中打开了对mmc的支持,所以导致mosi不正常,所以可能9260的mmc与dataflash不能同时使用,但9263的可以。
解决办法:make menuconfig
Device Drivers--->MMC/SD card support,取消其支持,问题解决!

还有一个问题可能大家没有注意到,没有解释清楚,其实是有问题的,我们的at91_add_device_spi函数如下:
static struct spi_board_info ek_spi_devices[] = {
#if !defined(CONFIG_MMC_AT91)
{ /* DataFlash chip */
.modalias = "mtd_dataflash",
.chip_select = 1,
.max_speed_hz = 15 * 1000 * 1000,
.bus_num = 0,
},
#if defined(CONFIG_MTD_AT91_DATAFLASH_CARD)
{ /* DataFlash card */
.modalias = "mtd_dataflash",
.chip_select = 0,
.max_speed_hz = 15 * 1000 * 1000,
.bus_num = 0,
},
#endif
#endif
#if defined(CONFIG_SND_AT73C213) || defined(CONFIG_SND_AT73C213_MODULE)
{ /* AT73C213 DAC */
.modalias = "at73c213",
.chip_select = 0,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
},
#endif
/* spi can ,add by mrz */
#if defined(CONFIG_CAN_MCP2515_MODULE) ||defined(CONFIG_CAN_MCP2515)
//defined(CONFIG_CAN_MCP2515)
{
.modalias = "mcp2515",
.chip_select = 0,
// .controller_data = AT91_PIN_PB3,
.irq = AT91_PIN_PC6, //AT91SAM9260_ID_IRQ0,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
/*
{
.modalias = "mcp2515",
.chip_select = 1,
// .controller_data = AT91_PIN_PC5,
.irq = AT91_PIN_PC7, //AT91SAM9260_ID_IRQ1,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
*/
#elif defined(CONFIG_CAN_MCP251X)
{
.modalias = "mcp251x",
.chip_select = 0,
// .controller_data = AT91_PIN_PB3,
.irq = AT91_PIN_PC6, //AT91SAM9260_ID_IRQ0,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
{
.modalias = "mcp251x",
.chip_select = 1,
// .controller_data = AT91_PIN_PC5,
.irq = AT91_PIN_PC7, //AT91SAM9260_ID_IRQ1,
.platform_data = &mcp251x_data,
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 1,
.mode = 0,
},
#endif
}
void __init at91_add_device_spi(struct spi_board_info *devices, int nr_devices)
{
int i;
unsigned long cs_pin;
short enable_spi0 = 0;
short enable_spi1 = 0;
/* Choose SPI chip-selects */
/*这里加载我们定义的spi_board_info结构体,也就是两个spi设备的信息,注意,他们这里没有使用spi_device结构体来做,而是使用一个板级信息体来完成。*/
for (i = 0; i < nr_devices; i++) {
/*该成员定义的就是cs引脚*/
if (devices[i].controller_data)
cs_pin = (unsigned long) devices[i].controller_data;
else if (devices[i].bus_num == 0)
cs_pin = spi0_standard_cs[devices[i].chip_select];
else
cs_pin = spi1_standard_cs[devices[i].chip_select];
/*根据需要加载的设备,确定需要打开哪几个SPI控制器,我们系统中有两个控制器,所以我们在以模块的方式加载驱动的时候,我们的设备必须在刚开始就被初始化!*/
if (devices[i].bus_num == 0)
enable_spi0 = 1;
else
enable_spi1 = 1;
/* enable chip-select pin */
/*将片选引脚设置为输出*/
at91_set_gpio_output(cs_pin, 1);
/* pass chip-select pin to driver */
devices[i].controller_data = (void *) cs_pin;
}
/*到此,循环执行完毕,向内核注册这些板级信息体*/
spi_register_board_info(devices, nr_devices);
/* Configure SPI bus(es) */
/*如果发现spi0上有设备注册,则打开spi0*/
if (enable_spi0) {
at91_set_A_periph(AT91_PIN_PA0, 0); /* SPI0_MISO */
at91_set_A_periph(AT91_PIN_PA1, 0); /* SPI0_MOSI */
at91_set_A_periph(AT91_PIN_PA2, 0); /* SPI1_SPCK */
at91_clock_associate("spi0_clk", &at91sam9260_spi0_device.dev, "spi_clk");
platform_device_register(&at91sam9260_spi0_device);
}
/*spi0设备也是如此*/
if (enable_spi1) {
at91_set_A_periph(AT91_PIN_PB0, 0); /* SPI1_MISO */
at91_set_A_periph(AT91_PIN_PB1, 0); /* SPI1_MOSI */
at91_set_A_periph(AT91_PIN_PB2, 0); /* SPI1_SPCK */
at91_clock_associate("spi1_clk", &at91sam9260_spi1_device.dev, "spi_clk");
platform_device_register(&at91sam9260_spi1_device);
}
}
从上面这个函数我们可以看出,这个函数就完成了两个功能:
1、向内核完成spi板级信息结构体的注册
2、注册了两个platform_device:spi0与spi1,这两个设备是spi总线控制器!
那么我们客户端spi_device设备的注册是如何完成的?不知道,呵呵
我今天仔细的看代码才发现玄机所在。
内核的注释很清晰的告诉我们,我们的spi设备是不允许热插拔!!这是由于spi设备驱动的框架不允许,我们的spi_device设备注册不是在板级初始化的时候完成的,而是在spi控制器的驱动加载的时候,也就是platform_driver:atmel_spi驱动加载的时候完成。
(atmel9260驱动文件atmel_spi.c)
driver/spi/atmel_spi.c文件中:
static int __init atmel_spi_probe(struct platform_device *pdev)
{
struct resource *regs;
int irq;
struct clk *clk;
int ret;
struct spi_master *master;
struct atmel_spi *as;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
clk = clk_get(&pdev->dev, "spi_clk");
if (IS_ERR(clk))
return PTR_ERR(clk);

/* setup spi core then atmel-specific driver state */
ret = -ENOMEM;
master = spi_alloc_master(&pdev->dev, sizeof *as);
if (!master)
goto out_free;
master->bus_num = pdev->id;
master->num_chipselect = 4;
master->setup = atmel_spi_setup;
master->transfer = atmel_spi_transfer;
master->cleanup = atmel_spi_cleanup;
platform_set_drvdata(pdev, master);
as = spi_master_get_devdata(master);
as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
&as->buffer_dma, GFP_KERNEL);
if (!as->buffer)
goto out_free;
spin_lock_init(&as->lock);
INIT_LIST_HEAD(&as->queue);
as->pdev = pdev;
as->regs = ioremap(regs->start, (regs->end - regs->start) + 1);
if (!as->regs)
goto out_free_buffer;
as->irq = irq;
as->clk = clk;
#ifdef CONFIG_ARCH_AT91
if (!cpu_is_at91rm9200())
as->new_1 = 1;
#endif
ret = request_irq(irq, atmel_spi_interrupt, 0,
pdev->dev.bus_id, master);
if (ret)
goto out_unmap_regs;
/* Initialize the hardware */
clk_enable(clk);
spi_writel(as, CR, SPI_BIT(SWRST));
spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
spi_writel(as, CR, SPI_BIT(SPIEN));
/* go! */
dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
(unsigned long)regs->start, irq);
/*spi注册这个主控制器*/
ret = spi_register_master(master);
if (ret)
goto out_reset_hw;
return 0;
out_reset_hw:
spi_writel(as, CR, SPI_BIT(SWRST));
clk_disable(clk);
free_irq(irq, master);
out_unmap_regs:
iounmap(as->regs);
out_free_buffer:
dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
as->buffer_dma);
out_free:
clk_put(clk);
spi_master_put(master);
return ret;
}
而这个spi_register_master位于driver/spi/spi.c文件中,该函数调用了scan_boardinfo(master),扫描该spi master下面设备。该函数就存在于该文件下:该函数调用了spi_new_device(master, chip),这个chip就是一个spi_board_info结构体,这就是at91_add_device_spi第一个作用的用处:向内核的链表注册spi_board_info结构体的用处所在。我们来看函数的调用过程:
atmel_spi_probe----->spi_register_master----->scan_boardinfo
---->spi_new_device
我们来看这个spi_new_device函数:
struct spi_device *spi_new_device(struct spi_master *master,
struct spi_board_info *chip)
{
struct spi_device *proxy;
struct device *dev = master->cdev.dev;
int status;
/* NOTE: caller did any chip->bus_num checks necessary */
if (!spi_master_get(master))
return NULL;
/*靠,终于找到你了,先暴打一顿,舒服了。。这里就分配了我们重要的spi_device结构体*/
proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
if (!proxy) {
dev_err(dev, "can't alloc dev for cs%d\n",
chip->chip_select);
goto fail;
}
/*这就是将我们的信息体中的数据转化为spi_device识别的数据*/
proxy->master = master;
proxy->chip_select = chip->chip_select;
proxy->max_speed_hz = chip->max_speed_hz;
proxy->mode = chip->mode;
proxy->irq = chip->irq;
proxy->modalias = chip->modalias;
snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
"%s.%u", master->cdev.class_id,
chip->chip_select);
proxy->dev.parent = dev;
proxy->dev.bus = &spi_bus_type;
/*这里很重要,如果你的spi设备是dataflash的话,保存的就是你的分区表!!!所以我们要返回去修改我们的spi_boardinfo结构体*/
proxy->dev.platform_data = (void *) chip->platform_data;
/*片选信号*/
proxy->controller_data = chip->controller_data;
proxy->controller_state = NULL;
proxy->dev.release = spidev_release;
/* drivers may modify this default i/o setup */
status = master->setup(proxy);
if (status < 0) {
dev_dbg(dev, "can't %s %s, status %d\n",
"setup", proxy->dev.bus_id, status);
goto fail;
}
/* driver core catches callers that misbehave by defining
* devices that already exist.
*/
/*看到这句话,大家放心了吧,大家也就知道怎么找到spi_driver驱动的。。。*/
status = device_register(&proxy->dev);
if (status < 0) {
dev_dbg(dev, "can't %s %s, status %d\n",
"add", proxy->dev.bus_id, status);
goto fail;
}
dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
return proxy;
fail:
spi_master_put(master);
kfree(proxy);
return NULL;
}

下面我们要解决最后的一个问题,dataflash的分区的问题,看了这么多,大家应该知道怎么解决了吧!
我们看mtd_dataflash.c文件中驱动加载函数调用了下面这个函数来添加flash设备。。
static int __devinit
add_dataflash(struct spi_device *spi, char *name,
int nr_pages, int pagesize, int pageoffset)
{
struct dataflash *priv;
struct mtd_info *device;
/*这里就告诉我们要在spi_boardinfo结构体的platform_data成员指向一个我们需要的flash_platform_data数据!*/
struct flash_platform_data *pdata = spi->dev.platform_data;
priv = kzalloc(sizeof *priv, GFP_KERNEL);
if (!priv)
return -ENOMEM;
init_MUTEX(&priv->lock);
priv->spi = spi;
priv->page_size = pagesize;
priv->page_offset = pageoffset;
/* name must be usable with cmdlinepart */
sprintf(priv->name, "spi%d.%d-%s",
spi->master->bus_num, spi->chip_select,
name);
device = &priv->mtd;
device->name = (pdata && pdata->name) ? pdata->name : priv->name;
device->size = nr_pages * pagesize;
device->erasesize = pagesize;
device->writesize = pagesize;
device->owner = THIS_MODULE;
device->type = MTD_DATAFLASH;
device->flags = MTD_WRITEABLE;
device->erase = dataflash_erase;
device->read = dataflash_read;
device->write = dataflash_write;
device->priv = priv;
dev_info(&spi->dev, "%s (%d KBytes)\n", name, device->size/1024);
dev_set_drvdata(&spi->dev, priv);
if (mtd_has_partitions()) {
struct mtd_partition *parts;
int nr_parts = 0;
/*我们这里没有定义该宏,所以不会在命令行传递分区表*/
#ifdef CONFIG_MTD_CMDLINE_PARTS
static const char *part_probes[] = { "cmdlinepart", NULL, };
nr_parts = parse_mtd_partitions(device, part_probes, &parts, 0);
#endif
if (nr_parts <= 0 && pdata && pdata->parts) {
parts = pdata->parts;
nr_parts = pdata->nr_parts;
}
if (nr_parts > 0) {
priv->partitioned = 1;
return add_mtd_partitions(device, parts, nr_parts);
}
} else if (pdata && pdata->nr_parts)
dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
pdata->nr_parts, device->name);
return add_mtd_device(device) == 1 ? -ENODEV : 0;
}

所以我们需要修改这个文件:
arch/arm/mach-at91/board-sam9260ek.c文件:
添加如下:
#if !defined(CONFIG_MMC_AT91)
#define SIZE_1PAGE 528
#define SIZE_1M (unsigned long)(1024*1024)
static struct mtd_partition ek_dataflash_partition[] = {
{
.name = "U-boot ENV",
.offset = 0,
.size = 64*SIZE_1PAGE,
},
{
.name = "U-BOOT",
.offset = 64*SIZE_1PAGE,
.size = 400*SIZE_1PAGE,
},
{
.name ="Kernel",
.offset=464*SIZE_1PAGE,
.size = 4000*SIZE_1PAGE,
},
{
.name ="Root fs",
.offset=4464*SIZE_1PAGE,
.size = (8192-4464)*SIZE_1PAGE,
},
};

struct flash_platform_data dataflash_atmel={
.name="AT45DB321",
.parts=ek_dataflash_partition,
.nr_parts=ARRAY_SIZE(ek_dataflash_partition),
};
#endif

修改spi_boardinfo结构体:
static struct spi_board_info ek_spi_devices[] = {
#if !defined(CONFIG_MMC_AT91)
{ /* DataFlash chip */
.modalias = "mtd_dataflash",
.chip_select = 1,
.max_speed_hz = 15 * 1000 * 1000,
.bus_num = 0,
.platform_data=&dataflash_atmel,
},
添加platform_data结构成员。

这里我们建立mtd_partition结构体要注意,由于dataflash是以528字节每页的,其实,at45db321x芯片可以设置为512字节每页,这个操作是不可以逆转的,那个位是一个otp位,用过的人就应该知道,但是出厂的时候默认的528字节每页。
如果我们不是以528个字节为单位的话,内核将出警告,强制将分区加载为readonly格式。
到此,分区加载成功,dmesg输出如下信息:
<6>mtd_dataflash spi0.1: AT45DB321x (4224 KBytes)
<5>Creating 4 MTD partitions on "AT45DB321":
<5>0x00000000-0x00008400 : "U-boot ENV"
<5>0x00008400-0x0003bd00 : "U-BOOT"
<5>0x0003bd00-0x0023f700 : "Kernel"
<5>0x0023f700-0x00420000 : "Root fs"
linux简直太伟大了,使用得越多,就越能体会到其思想的伟大
文章出处:http://www.diybl.com/course/6_system/linux/Linuxjs/200868/123621_3.html

SPI设备的驱动的更多相关文章

  1. RT-thread 设备驱动组件之SPI设备

    本文主要介绍RT-thread中的SPI设备驱动,涉及到的文件主要有:驱动框架文件(spi_dev.c,spi_core.c,spi.h),底层硬件驱动文件(spi_hard.c,spi_hard.h ...

  2. RT Thread的SPI设备驱动框架的使用以及内部机制分析

    注释:这是19年初的博客,写得很一般,理解不到位也不全面.19年末得空时又重新看了RTThread的SPI和GPIO,这次理解得比较深刻.有时间时再整理上传. -------------------- ...

  3. spi子系统之驱动SSD1306 OLED

    spi子系统之驱动SSD1306 OLED 接触Linux之前,曾以为读源码可以更快的学习软件,于是前几个博客都是一边读源码一边添加注释,甚至精读到每一行代码,实际上效果并不理想,看过之后就忘记了.主 ...

  4. i2c总线,设备,驱动之间的关系

    ------ 总线上先添加好所有具体驱动,i2c.c遍历i2c_boardinfo链表,依次建立i2c_client, 并对每一个i2c_client与所有这个线上的驱动匹配,匹配上,就调用这个驱动的 ...

  5. Linux下platform设备以及platform设备和驱动注册的先后顺序

    platform是Linux系统提供的一种管理设备的手段,所有SOC系统中集成的独立的外设控制器.挂接在SOC内存空间的外设等都属Platform设备.如ARM S3C6410处理器中,把内部集成的I ...

  6. Linux kernel 有关 spi 设备树参数解析

    一.最近做了一个 spi 设备驱动从板级设备驱动升级到设备树设备驱动,这其中要了解 spi 设备树代码的解析. 二. 设备树配置如下: 503 &spi0 { 504 status = &qu ...

  7. Linux内核调用SPI平台级驱动_实现OLED的显示功能

    Linux内核调用SPI驱动_实现OLED显示功能 0. 导语 进入Linux的世界,发现真的是无比的有趣,也发现搞Linux驱动从底层嵌入式搞起真的是很有益处.我们在单片机.DSP这些无操作系统的裸 ...

  8. linux驱动基础系列--Linux下Spi接口Wifi驱动分析

    前言 本文纯粹的纸上谈兵,我并未在实际开发过程中遇到需要编写或调试这类驱动的时候,本文仅仅是根据源码分析后的记录!基于内核版本:2.6.35.6 .主要是想对spi接口的wifi驱动框架有一个整体的把 ...

  9. 让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型

    本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) 公元1951年5月15日的国会听证上, ...

随机推荐

  1. Vue路由跳转到新页面时 默认在页面最底部 而不是最顶部 的解决

    今天碰到一个问题   vue路由跳转到新的页面时会直接显示页面最底部  正常情况下是显示的最顶部的  而且好多路由中不是全部都是这种情况  折腾好长时间也没解决  最后在网上找到了解决办法 其实原理很 ...

  2. 数据预处理之数据规约(Data Reduction)

    数据归约策略 数据仓库中往往具有海量的数据,在其上进行数据分析与挖掘需要很长的时间 数据归约 用于从源数据中得到数据集的归约表示,它小的很多,但可以产生相同的(几乎相同的)效果 数据归约策略 维归约  ...

  3. verilog 1995 VS 2001 part1模块声明的扩展

    1.模块声明的扩展 (1)端口声明(input/output/inout)同数据类型声明(reg /wire)放在同一语句中. (2)ANSI C风格的端口声明可以用于module/task/func ...

  4. leetcode-9-basic-binary search

    278. First Bad Version You are a product manager and currently leading a team to develop a new produ ...

  5. IAR单片机启动文件与程序入口

    最近在做TI单片机TM4C123GE6PZ的BootLoader,需要对启动文件做出修改,折腾了半宿,弄得事实而非. IAR默认提供了单片机的启动文件,cstart.s或者其他cstartxxx.s, ...

  6. eclipse使用技巧的网站收集——转载(一)

    Eclipse工具使用技巧总结(转载) 首先推荐一篇非常好的How to use eclipse文章 ,讲的是eclipse使用的方方面面,非常实用,推荐给大家! 一.常用快捷键:Ctrl+F11 运 ...

  7. 如何固定电脑IP

    百度经验里有:http://jingyan.baidu.com/article/2f9b480d579fc041cb6cc297.html 但是就关于如何填写DNS时,就不知道咋办了,特意问了一下IT ...

  8. selenuim2模拟鼠标键盘操作

    有时候有些元素不便点击或者做其他的操作,这个时候可以借助selenium提供的Actions类,它可以模拟鼠标和键盘的一些操作,比如点击鼠标右键,左键,移动鼠标等操作.对于这些操作,使用perform ...

  9. 2015四川省赛 D Vertex Cover 搜索

    题意: 给出一个\(n\)个点\(m\)条边的无向图,现在要给若干个点染色,使得每条边都至少邻接一个被染色的顶点.问至少要给多少各点染色才能满足条件. 分析: 注意到题目中有一个很特殊的条件: 对于图 ...

  10. Win磁盘MBR转换为GUID

    title: Win磁盘MBR转换为GUID date: 2018-09-02 11:52:32 updated: tags: [windows,记录,折腾] description: keyword ...