Neural Network
逻辑回归用神经网络节点的方式表示
前面已经介绍过逻辑回归的模型,样本为(x,y) 其中y的值为1或0,假设x有2个特征,则对应关系如下图所示。

实际情况是需要求需要三个参数,因此输入层需要添加一个节点表示偏置项。通过此模型对于任何一个输入x,都会产生一个输出与之对应。

有了这个图就可以方便的介绍神经网络模型了。
神经网络模型和参数
下图所示的是一个简单的神经网络模型和加入偏置项的示意图,输入和输出完全相同。区别是,比起逻辑回归它多了两个节点的隐藏层。通过分解可以发现它是由3个逻辑回归组成,按下图出现的顺序命名为LR01,LR02,LR03。



完整的参数模型是

a1为输入层输入值,即为x的值为LR01,LR02的输入。a2为LR03的输入 a3为最终的输出值。z2为一到二的中间值,z3为二到三层的中间值。
前向传播计算cost function
模型需要确定的参数个数为9个。由逻辑回归可知,对于LR01有
\[z_1^{(2)}=\Theta_{10}^{(1)}*a_0^{(1)}+\Theta_{11}^{(1)}*a_1^{(1)}+\Theta_{12}^{(1)}*a_2^{(1)}\]
\[a_1^{(2)}=\frac 1 {1+e^{-z_1^{(2)}}}\]
对于LR02有
\[z_2^{(2)}=\Theta_{20}^{(1)}*a_0^{(1)}+\Theta_{21}^{(1)}*a_1^{(1)}+\Theta_{22}^{(1)}*a_2^{(1)}\]
\[a_2^{(2)}=\frac 1 {1+e^{-z_2^{(2)}}}\]
LR01和LR02用矩阵描述如下
\[\Theta^{(1)}*a^{(1)}=z^{(2)}\]
其中
\[a^{(1)}=
\begin{pmatrix}
a_0^{(1)} \\
a_1^{(1)} \\
a_2^{(1)} \\
\end{pmatrix}
\]
\[\Theta^{(1)}=
\begin{pmatrix}
\Theta_{10}^{(1)} & \Theta_{11}^{(1)} & \Theta_{12}^{(1)} \\
\Theta_{20}^{(1)} & \Theta_{21}^{(1)} & \Theta_{22}^{(1)} \\
\end{pmatrix}
\]
\[z^{(2)}=
\begin{pmatrix}
z_1^{(2)} \\
z_2^{(2)} \\
\end{pmatrix}
\]
第二层到第三层,首先需要加入偏置节点a2_0然后第三层中间值和输出值为。
\[z_1^{(3)}=\Theta_{10}^{(2)}*a_0^{(2)}+\Theta_{11}^{(2)}*a_1^{(2)}+\Theta_{12}^{(2)}*a_2^{(2)}\]
\[a_1^{(3)}=\frac 1 {1+e^{-z_1^{(3)}}}\]
那么最终的损失函数为
\[J(\Theta)=-\frac 1 m[\sum_{i=1}^my^{(i)}log(a_1^{(3)})^{(i)}+(1-y^{(i)})log(1-(a_1^{(3)})^{(i)})]\]
下一步需要做的是使用梯度下降的方法求出所有的参数值。
反向传播计算梯度下降
对于每个参数\(\Theta^{(l)}_{ij}\)需要计算\(\frac{\partial J(\Theta)}{\partial \Theta^{(l)}_{ij}}\),计算公式如下。
\[\frac{\partial J(\Theta)}{\partial \Theta^{(2)}}=a^{(2)}\delta^{(3)}\]
\[\delta^{(3)}=(a^{(3)}_1-y).*g^{'}(z^{(3)})=(a^{(3)}_1-y)a^{(3)}(1-a^{(3)})\]
\[\frac{\partial J(\Theta)}{\partial \Theta^{(1)}}=a^{(1)}\delta^{(2)}\]
\[\delta^{(2)}=(\Theta^{(2)})^T\delta^{(3)}.*g^{'}(z^{(2)})=(\Theta^{(2)})^T\delta^{(3)}a^{(2)}(1-a^{(2)})\]
示例一共有9个参数,现在只需要推导出4个。使用的是求导的链式法则。
Neural Network的更多相关文章
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- Neural Network Toolbox使用笔记1:数据拟合
http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程 ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- How to implement a neural network
神经网络的实践笔记 link: http://peterroelants.github.io/posts/neural_network_implementation_part01/ 1. 生成训练数据 ...
- CS224d assignment 1【Neural Network Basics】
refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224 ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)
白翔的CRNN论文阅读 1. 论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...
- (转)The Neural Network Zoo
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, ...
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
随机推荐
- Flask之目录结构
学习Flask,整合其目录结构也是比较重要的.一个最基础的Flask目录如下所示: 一.SQLAlchemy-utils 由于sqlalchemy中没有提供choice方法,所以借助SQLAlchem ...
- webpack 安装后提示CLI
webpack 4X 后需要安装webpack-cli 请注意需要安装在同一目录 npm install --save-dev webpack -g 输入以上命令后: webpack -v 提示: T ...
- 分享几道经典的javascript面试题
这几道题目还是有一点意思的,大家可以研究一番,对自己的技能提升绝对有帮助. 1.调用过程中输出的内容是什么 function fun(n, o) { console.log(o); return { ...
- RING0到RING3
在前一篇文章里面,我们将了CPU保护模式中的几种特权RING0,RING1,RING2,RING3!操作系统通常运行在RING0,应用程序通常运行在RING3. CPU如何从RING0到RING3 先 ...
- 海海DRM视频保护解密流程分析
环境及工具 手机 :小米手机 MI 2A 系统版本: Android 4.1.1 工具 : IDA pro 6.6 .C32Asm .VS2005 一:第一次打开加密视频会出现如下验证: ...
- C++编写字符串类CNString,该类有默认构造函数、类的拷贝函数、类的析构函数及运算符重载
编码实现字符串类CNString,该类有默认构造函数.类的拷贝函数.类的析构函数及运算符重载,需实现以下“=”运算符.“+”运算.“[]”运算符.“<”运算符及“>”运算符及“==”运算符 ...
- SQL Server(第二章) 字符串函数、日期时间函数、转换函数
--1.CONCAT 函数:字符串连接(支持sql server2012 SQL规则 如果与NULL连接返回NILL) SELECT empid,CONCAT(firstname,lastname) ...
- 在eclipse上搭建springBoot
1,具体步骤网上有,需要注意的是,如果是maven项目,需要先下载maven,配置环境变量,再在eclipse-windows -- preference -- maven,选择usersetting ...
- pat甲级1016
1016 Phone Bills (25)(25 分) A long-distance telephone company charges its customers by the following ...
- win8.1和wp8.1共用代码,需要注意的一些问题
最近写了一个应有,使用了mvvmlight,把viewmodel.model.common之类的代码都放到了shared共享,写下来才发现,有不少问题是自已下手之前没注意到的,有些地方实在没法中途改了 ...