逻辑回归用神经网络节点的方式表示

前面已经介绍过逻辑回归的模型,样本为(x,y) 其中y的值为1或0,假设x有2个特征,则对应关系如下图所示。

实际情况是需要求需要三个参数,因此输入层需要添加一个节点表示偏置项。通过此模型对于任何一个输入x,都会产生一个输出与之对应。

有了这个图就可以方便的介绍神经网络模型了。

神经网络模型和参数

下图所示的是一个简单的神经网络模型和加入偏置项的示意图,输入和输出完全相同。区别是,比起逻辑回归它多了两个节点的隐藏层。通过分解可以发现它是由3个逻辑回归组成,按下图出现的顺序命名为LR01,LR02,LR03。




完整的参数模型是

a1为输入层输入值,即为x的值为LR01,LR02的输入。a2为LR03的输入 a3为最终的输出值。z2为一到二的中间值,z3为二到三层的中间值。

前向传播计算cost function

模型需要确定的参数个数为9个。由逻辑回归可知,对于LR01有
\[z_1^{(2)}=\Theta_{10}^{(1)}*a_0^{(1)}+\Theta_{11}^{(1)}*a_1^{(1)}+\Theta_{12}^{(1)}*a_2^{(1)}\]
\[a_1^{(2)}=\frac 1 {1+e^{-z_1^{(2)}}}\]
对于LR02有
\[z_2^{(2)}=\Theta_{20}^{(1)}*a_0^{(1)}+\Theta_{21}^{(1)}*a_1^{(1)}+\Theta_{22}^{(1)}*a_2^{(1)}\]
\[a_2^{(2)}=\frac 1 {1+e^{-z_2^{(2)}}}\]
LR01和LR02用矩阵描述如下
\[\Theta^{(1)}*a^{(1)}=z^{(2)}\]
其中
\[a^{(1)}=
\begin{pmatrix}
a_0^{(1)} \\
a_1^{(1)} \\
a_2^{(1)} \\
\end{pmatrix}
\]
\[\Theta^{(1)}=
\begin{pmatrix}
\Theta_{10}^{(1)} & \Theta_{11}^{(1)} & \Theta_{12}^{(1)} \\
\Theta_{20}^{(1)} & \Theta_{21}^{(1)} & \Theta_{22}^{(1)} \\
\end{pmatrix}
\]
\[z^{(2)}=
\begin{pmatrix}
z_1^{(2)} \\
z_2^{(2)} \\
\end{pmatrix}
\]
第二层到第三层,首先需要加入偏置节点a2_0然后第三层中间值和输出值为。
\[z_1^{(3)}=\Theta_{10}^{(2)}*a_0^{(2)}+\Theta_{11}^{(2)}*a_1^{(2)}+\Theta_{12}^{(2)}*a_2^{(2)}\]
\[a_1^{(3)}=\frac 1 {1+e^{-z_1^{(3)}}}\]

那么最终的损失函数为
\[J(\Theta)=-\frac 1 m[\sum_{i=1}^my^{(i)}log(a_1^{(3)})^{(i)}+(1-y^{(i)})log(1-(a_1^{(3)})^{(i)})]\]
下一步需要做的是使用梯度下降的方法求出所有的参数值。

反向传播计算梯度下降

对于每个参数\(\Theta^{(l)}_{ij}\)需要计算\(\frac{\partial J(\Theta)}{\partial \Theta^{(l)}_{ij}}\),计算公式如下。

\[\frac{\partial J(\Theta)}{\partial \Theta^{(2)}}=a^{(2)}\delta^{(3)}\]

\[\delta^{(3)}=(a^{(3)}_1-y).*g^{'}(z^{(3)})=(a^{(3)}_1-y)a^{(3)}(1-a^{(3)})\]

\[\frac{\partial J(\Theta)}{\partial \Theta^{(1)}}=a^{(1)}\delta^{(2)}\]

\[\delta^{(2)}=(\Theta^{(2)})^T\delta^{(3)}.*g^{'}(z^{(2)})=(\Theta^{(2)})^T\delta^{(3)}a^{(2)}(1-a^{(2)})\]
示例一共有9个参数,现在只需要推导出4个。使用的是求导的链式法则。

Neural Network的更多相关文章

  1. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  2. Neural Network Toolbox使用笔记1:数据拟合

    http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程 ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. How to implement a neural network

    神经网络的实践笔记 link: http://peterroelants.github.io/posts/neural_network_implementation_part01/ 1. 生成训练数据 ...

  5. CS224d assignment 1【Neural Network Basics】

    refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224 ...

  6. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  7. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  8. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  9. (转)The Neural Network Zoo

    转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, ...

  10. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

随机推荐

  1. Mongodb简介及基本操作

    一.简介 MongoDB是一款强大.灵活.且易于扩展的通用型数据库 MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性 ...

  2. vue列表到详情页的实现

    路由里边的 router/index.js path:'/detail/:id' 动态id 列表页渲染时: :to="'/detail/'+item.id" ===>id是指 ...

  3. web开发模式小结:页面乱码和跳转

    本文由付老师总结书写 java开发模式: (1)第一种开始模式:javaBean+jsp : 优点:可以为web程序在jsp中减少java代码量 适用于该开发模式的jsp的动作元素:<jsp:u ...

  4. hihoCoder hiho一下 第十二周 #1055 : 刷油漆 (树上DP)

    思路: 只能刷部分节点数m,总节点数n.如果m>=n那么就可以全刷了,那就不用任何算法了.如果m<n那么就要有取舍了.用DP思路,记录下每个节点如果获得到1~m个选择所能获得的最大权值.这 ...

  5. linux 命令——20 find(转)

    find是我们很常用的一个Linux命令,但是我们一般查找出来的并不仅仅是看看而已,还会有进一步的操作,这个时候exec的作用就显现出来了. exec解释: -exec  参数后面跟的是command ...

  6. Ruby 学习笔记(一)

    环境搭建 本文基于Mac OS,windowns坑较多,建议使用Mac. xcode-select -p 检查是否安装xcode-select, 如果没有,通过xcode-select --insta ...

  7. Windows Phone Emulator 模拟器常用快捷键

    在使用Windows Phone 的开发的时候,在目前大家还很难买到真实的Windows Phone 设备的情况下,我们用来调试自己的程序经常用到的可能就是Emulator了.经常会有人问我说,用鼠标 ...

  8. iOS 7系列译文:认识 TextKit

    OS 7:终于来了,TextKit.   功能   所以咱们到了.iOS7 带着 TextKit 登陆了.咱们看看它可以做什么!深入之前,我还想提一下,严格来说,这些事情中的大部分以前都可以做.如果你 ...

  9. PMBOK(第六版) PMP笔记——第十章(项目沟通管理)

    PM 大多数时间都用在与干系人的沟通上.第十章有三个过程: 规划沟通管理:根据干系人的需求,制定沟通管理计划管理沟通:根据沟通管理计划发布.收集.处理信息监督沟通:确保在正确时间将正确信息传递给正确的 ...

  10. 2018.2.2 java中的Date如何获取 年月日时分秒

    package com.util; import java.text.DateFormat; import java.util.Calendar; import java.util.Date; pub ...