逻辑回归用神经网络节点的方式表示

前面已经介绍过逻辑回归的模型,样本为(x,y) 其中y的值为1或0,假设x有2个特征,则对应关系如下图所示。

实际情况是需要求需要三个参数,因此输入层需要添加一个节点表示偏置项。通过此模型对于任何一个输入x,都会产生一个输出与之对应。

有了这个图就可以方便的介绍神经网络模型了。

神经网络模型和参数

下图所示的是一个简单的神经网络模型和加入偏置项的示意图,输入和输出完全相同。区别是,比起逻辑回归它多了两个节点的隐藏层。通过分解可以发现它是由3个逻辑回归组成,按下图出现的顺序命名为LR01,LR02,LR03。




完整的参数模型是

a1为输入层输入值,即为x的值为LR01,LR02的输入。a2为LR03的输入 a3为最终的输出值。z2为一到二的中间值,z3为二到三层的中间值。

前向传播计算cost function

模型需要确定的参数个数为9个。由逻辑回归可知,对于LR01有
\[z_1^{(2)}=\Theta_{10}^{(1)}*a_0^{(1)}+\Theta_{11}^{(1)}*a_1^{(1)}+\Theta_{12}^{(1)}*a_2^{(1)}\]
\[a_1^{(2)}=\frac 1 {1+e^{-z_1^{(2)}}}\]
对于LR02有
\[z_2^{(2)}=\Theta_{20}^{(1)}*a_0^{(1)}+\Theta_{21}^{(1)}*a_1^{(1)}+\Theta_{22}^{(1)}*a_2^{(1)}\]
\[a_2^{(2)}=\frac 1 {1+e^{-z_2^{(2)}}}\]
LR01和LR02用矩阵描述如下
\[\Theta^{(1)}*a^{(1)}=z^{(2)}\]
其中
\[a^{(1)}=
\begin{pmatrix}
a_0^{(1)} \\
a_1^{(1)} \\
a_2^{(1)} \\
\end{pmatrix}
\]
\[\Theta^{(1)}=
\begin{pmatrix}
\Theta_{10}^{(1)} & \Theta_{11}^{(1)} & \Theta_{12}^{(1)} \\
\Theta_{20}^{(1)} & \Theta_{21}^{(1)} & \Theta_{22}^{(1)} \\
\end{pmatrix}
\]
\[z^{(2)}=
\begin{pmatrix}
z_1^{(2)} \\
z_2^{(2)} \\
\end{pmatrix}
\]
第二层到第三层,首先需要加入偏置节点a2_0然后第三层中间值和输出值为。
\[z_1^{(3)}=\Theta_{10}^{(2)}*a_0^{(2)}+\Theta_{11}^{(2)}*a_1^{(2)}+\Theta_{12}^{(2)}*a_2^{(2)}\]
\[a_1^{(3)}=\frac 1 {1+e^{-z_1^{(3)}}}\]

那么最终的损失函数为
\[J(\Theta)=-\frac 1 m[\sum_{i=1}^my^{(i)}log(a_1^{(3)})^{(i)}+(1-y^{(i)})log(1-(a_1^{(3)})^{(i)})]\]
下一步需要做的是使用梯度下降的方法求出所有的参数值。

反向传播计算梯度下降

对于每个参数\(\Theta^{(l)}_{ij}\)需要计算\(\frac{\partial J(\Theta)}{\partial \Theta^{(l)}_{ij}}\),计算公式如下。

\[\frac{\partial J(\Theta)}{\partial \Theta^{(2)}}=a^{(2)}\delta^{(3)}\]

\[\delta^{(3)}=(a^{(3)}_1-y).*g^{'}(z^{(3)})=(a^{(3)}_1-y)a^{(3)}(1-a^{(3)})\]

\[\frac{\partial J(\Theta)}{\partial \Theta^{(1)}}=a^{(1)}\delta^{(2)}\]

\[\delta^{(2)}=(\Theta^{(2)})^T\delta^{(3)}.*g^{'}(z^{(2)})=(\Theta^{(2)})^T\delta^{(3)}a^{(2)}(1-a^{(2)})\]
示例一共有9个参数,现在只需要推导出4个。使用的是求导的链式法则。

Neural Network的更多相关文章

  1. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  2. Neural Network Toolbox使用笔记1:数据拟合

    http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程 ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. How to implement a neural network

    神经网络的实践笔记 link: http://peterroelants.github.io/posts/neural_network_implementation_part01/ 1. 生成训练数据 ...

  5. CS224d assignment 1【Neural Network Basics】

    refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224 ...

  6. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  7. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  8. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  9. (转)The Neural Network Zoo

    转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, ...

  10. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

随机推荐

  1. Flask之目录结构

    学习Flask,整合其目录结构也是比较重要的.一个最基础的Flask目录如下所示: 一.SQLAlchemy-utils 由于sqlalchemy中没有提供choice方法,所以借助SQLAlchem ...

  2. webpack 安装后提示CLI

    webpack 4X 后需要安装webpack-cli 请注意需要安装在同一目录 npm install --save-dev webpack -g 输入以上命令后: webpack -v 提示: T ...

  3. 分享几道经典的javascript面试题

    这几道题目还是有一点意思的,大家可以研究一番,对自己的技能提升绝对有帮助. 1.调用过程中输出的内容是什么 function fun(n, o) { console.log(o); return { ...

  4. RING0到RING3

    在前一篇文章里面,我们将了CPU保护模式中的几种特权RING0,RING1,RING2,RING3!操作系统通常运行在RING0,应用程序通常运行在RING3. CPU如何从RING0到RING3 先 ...

  5. 海海DRM视频保护解密流程分析

    环境及工具 手机    :小米手机 MI 2A 系统版本: Android 4.1.1 工具    : IDA pro 6.6 .C32Asm .VS2005 一:第一次打开加密视频会出现如下验证: ...

  6. C++编写字符串类CNString,该类有默认构造函数、类的拷贝函数、类的析构函数及运算符重载

    编码实现字符串类CNString,该类有默认构造函数.类的拷贝函数.类的析构函数及运算符重载,需实现以下“=”运算符.“+”运算.“[]”运算符.“<”运算符及“>”运算符及“==”运算符 ...

  7. SQL Server(第二章) 字符串函数、日期时间函数、转换函数

    --1.CONCAT 函数:字符串连接(支持sql server2012 SQL规则 如果与NULL连接返回NILL) SELECT empid,CONCAT(firstname,lastname) ...

  8. 在eclipse上搭建springBoot

    1,具体步骤网上有,需要注意的是,如果是maven项目,需要先下载maven,配置环境变量,再在eclipse-windows -- preference -- maven,选择usersetting ...

  9. pat甲级1016

    1016 Phone Bills (25)(25 分) A long-distance telephone company charges its customers by the following ...

  10. win8.1和wp8.1共用代码,需要注意的一些问题

    最近写了一个应有,使用了mvvmlight,把viewmodel.model.common之类的代码都放到了shared共享,写下来才发现,有不少问题是自已下手之前没注意到的,有些地方实在没法中途改了 ...