题解

最小割+主席树优化建图

首先看到每个点只有\(0/1\)两种状态就想到最小割

然后由于有一个限制是点\(i\)是黑点且有符合条件的白点就会减去\(p_i\)

所以我们将\(S\)集合设为黑点集合,\(T\)集合设为白点集合

然后\(S\to i\)流量为\(b_i\) , \(i\to T\)流量为\(w_i\)

然后我们就需要考虑如果一个点选择了黑点那么就要去判断有没有符合条件的白点

所以我们对每个\(i\)新建一个\(i'\)

然后\(i\to i'\)连流量为\(p_i\)的边

\(i'\)向符合条件的\(j\)连流量为\(INF\)的边

由于是求最大值,所以答案就是\(\sum_{b_i+w_i}-\)最小割

这样建图的最小割就可以起到自动分类讨论的作用

例如如果\(i\)为黑点,\(j\)为白点,那么就会产生\(-p_i\)的贡献

这样的话如果我们实际选择了\(i\)为黑点,\(j\)为白点

那么这一路的流量就是\(w_i+b_j+\min(b_i-w_i,p_i,w_j-b_j)\)

这样就自动的起到了分类讨论的作用

然后我们发现一个黑点对于符合条件的白点的要求是一个二维的限制

所以可以考虑主席树优化建图

跟线段树优化建图比较类似

就是在继承上一棵主席树的时候两棵主席树之间要互相连一条边

void insert() {
t[++tot] = t[now] ;
add_edge(tot , now) ; /*注意这里要连边*/
now = tot ;
}

代码

#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
# define ls (t[now].lsn)
# define rs (t[now].rsn)
const int M = 500005 ;
const int N = 5050 ;
const int INF = 1e9 ;
using namespace std ; inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
} map < int , int > mp ;
int n , tot , S , T , cnt ;
int num = 1 , hea[M] , ans ;
int rt[N] , s[N] , suc[N] , idk[N] , d[M] ;
int a[N] , b[N] , w[N] , lp[N] , rp[N] , p[N] ; struct E { int nxt , to , dis ; } edge[M * 5] ;
struct Node { int lsn , rsn ; } t[M] ;
inline void Insert_edge(int from , int to , int dis) {
edge[++num].nxt = hea[from] ; edge[num].to = to ;
edge[num].dis = dis ; hea[from] = num ;
}
inline void add_edge(int u , int v , int w) {
Insert_edge(u , v , w) ;
Insert_edge(v , u , 0) ;
}
inline int Gid(int x) {
int l = 1 , r = cnt , ret = 0 , mid ;
while(l <= r) {
mid = (l + r) >> 1 ;
if(suc[mid] <= x) l = mid + 1 , ret = mid ;
else r = mid - 1 ;
}
return ret ;
} void Insert(int id , int x , int l , int r , int &now) {
t[++tot] = t[now] ; add_edge(tot , now , INF) ; now = tot ;
if(l == r) { add_edge(now , id , INF) ; return ; }
int mid = (l + r) >> 1 ;
if(mid >= x) Insert(id , x , l , mid , ls) ;
else Insert(id , x , mid + 1 , r , rs) ;
if(ls) add_edge(now , ls , INF) ;
if(rs) add_edge(now , rs , INF) ;
}
void Add(int id , int L , int R , int l , int r , int now) {
if(now <= n) return ;
if(l >= L && r <= R) { add_edge(id , now , INF) ; return ; }
int mid = (l + r) >> 1 ;
if(mid >= R) Add(id , L , R , l , mid , ls) ;
else if(mid < L) Add(id , L , R , mid + 1 , r , rs) ;
else Add(id , L , mid , l , mid , ls) , Add(id , mid + 1 , R , mid + 1 , r , rs) ;
}
inline bool bfs() {
queue < int > q ; q.push(S) ;
memset(d , 0 , sizeof(d)) ; d[S] = 1 ;
while(!q.empty()) {
int u = q.front() ; q.pop() ;
for(int i = hea[u] ; i ; i = edge[i].nxt) {
int v = edge[i].to ;
if(!d[v] && edge[i].dis > 0) {
d[v] = d[u] + 1 ;
q.push(v) ; if(v == T) return true ;
}
}
}
return d[T] ;
}
int dfs(int u , int dis) {
if(u == T || !dis) return dis ; int sum = 0 ;
for(int i = hea[u] ; i ; i = edge[i].nxt) {
int v = edge[i].to ;
if(d[v] == d[u] + 1 && edge[i].dis > 0) {
int diss = dfs(v , min(dis , edge[i].dis)) ;
if(diss > 0) {
edge[i].dis -= diss ; edge[i ^ 1].dis += diss ;
dis -= diss ; sum += diss ; if(!dis) break ;
}
}
}
if(!sum) d[u] = -1 ; return sum ;
}
inline int dinic() {
int tmp = 0 ;
while(bfs())
tmp += dfs(S , INF) ;
return tmp ;
}
int main() {
n = read() ;
for(int i = 1 ; i <= n ; i ++) {
a[i] = read() ; b[i] = read() ; w[i] = read() ;
lp[i] = read() ; rp[i] = read() ; p[i] = read() ;
add_edge(S , ++tot , b[i]) ;
s[i] = a[i] ; ans += b[i] + w[i] ;
}
rt[0] = tot ;
sort(s + 1 , s + n + 1) ;
for(int i = 1 ; i <= n ; i ++) {
if(i == 1 || s[i] != s[i - 1]) ++ cnt ;
mp[s[i]] = cnt ; suc[cnt] = s[i] ;
}
for(int i = 1 ; i <= n ; i ++)
a[i] = mp[a[i]] ;
for(int i = 1 ; i <= n ; i ++) {
rt[i] = rt[i - 1] ;
Insert(i , a[i] , 0 , cnt , rt[i]) ;
}
for(int i = 1 ; i <= n ; i ++) {
idk[i] = ++ tot ;
add_edge(i , idk[i] , p[i]) ;
}
T = tot + 1 ;
for(int i = 1 ; i <= n ; i ++)
add_edge(i , T , w[i]) ;
suc[0] = -1 ;
for(int i = 1 , l , r ; i <= n ; i ++) {
l = Gid(lp[i]) , r = Gid(rp[i]) ;
if(lp[i] != suc[l]) ++ l ;
if(l > r) continue ;
Add(idk[i] , l , r , 0 , cnt , rt[i - 1]) ;
}
printf("%d\n",ans - dinic()) ;
return 0 ;
}

[BZOJ3128]a+b Problem的更多相关文章

  1. 1199 Problem B: 大小关系

    求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...

  2. No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.

    Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...

  3. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  4. Time Consume Problem

    I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...

  5. Programming Contest Problem Types

        Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...

  6. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. Non-parseable POM C:\Users\admin\.m2\repository\org\springframework问题解决方案

    现象: [INFO] Scanning for projects... [ERROR] [ERROR] Some problems were encountered while processing ...

  2. [bzoj 3720] Gty的妹子树 (树上分块)

    树上分块(块状树) Description 我曾在弦歌之中听过你, 檀板声碎,半出折子戏. 舞榭歌台被风吹去, 岁月深处尚有余音一缕-- Gty神(xian)犇(chong)从来不缺妹子-- 他来到了 ...

  3. "未预编译文件 因此不能请求该文件"问题处理

    手里一个项目重新编译后发布,访问时提示未预编译文件“default.aspx”, 因此不能请求该文件.综合网上的解决方法,做了如下操作: 1.重新安装了AJAX Extension: 2.项目添加引用 ...

  4. hdu-5734 Acperience(数学)

    题目链接: Acperience Time Limit: 4000/2000 MS (Java/Others)   Memory Limit: 65536/65536 K (Java/Others) ...

  5. 【EOJ Monthly 2018.2 (Good bye 2017)】

    23333333333333333 由于情人节要回家,所以就先只放代码了. 此题是与我胖虎过不去. [E. 出老千的 xjj] #include<cstdio> #include<c ...

  6. java虚拟机内存溢出和泄漏实例

    测试参数设置: 1.循环调用new A()实现堆溢出,java.lang.OutOfMemoryError: Java heap space, 虚拟机参数:-Xms1M -Xmx1M -XX:+Hea ...

  7. 「USACO16OPEN」「LuoguP3147」262144(区间dp

    P3147 [USACO16OPEN]262144 题目描述 Bessie likes downloading games to play on her cell phone, even though ...

  8. Windows Vista for Developers——第四部分:用户帐号控制(User Account Control,UAC)

    作者:Kenny Kerr 翻译:Dflying Chen 原文:http://weblogs.asp.net/kennykerr/archive/2006/09/29/Windows-Vista-f ...

  9. JAVA 中的堆和栈

    栈与堆都是Java用来在Ram中存放数据的地方.与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆.     Java的堆是一个运行时数据区,类的对象从中分配空间.这些对象通过new.n ...

  10. Linux设备驱动之Kobject、Kset

    作者:lizuobin(也是我们兼职的论坛答疑助手) 原文: https://blog.csdn.net/lizuobin2/article/details/51523693 纠结又纠结,虽然看了一些 ...