点击打开链接

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
ll gcd(ll x, ll y){
if(x>y)swap(x,y);
while(x){
y%=x;
swap(x,y);
}
return y;
}
const ll inf = 1<<30;
const double eps = 1e-8; typedef pair<ll,ll> pii;
template <class T>
inline bool rd(T &ret) {
char c; ll sgn;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) {
putchar('-');
x = -x;
}
if(x>9) pt(x/10);
putchar(x%10+'0');
} #define N 100005
struct node{
ll pos, l, r, gval;
node(ll a=0,ll b=0,ll c=0,ll d=0):pos(a),l(b),r(c),gval(d){}
bool operator < (const node &x) const {
if(x.gval != gval)
return gval < x.gval;
if(x.pos != pos)
return pos < x.pos;
return r < x.r;
}
}p[N*15]; vector<node> G[N];
ll a[N], n, que, top;
pii ans;
ll sum[N*15]; ll cnt[N*15];
void precal(){
G[n].push_back(node(n,n,n,a[n]));
for(ll i = n-1; i; i--){
G[i].push_back(node(i,i,i,a[i]));
for(ll j = 0; j < G[i+1].size(); j++){
node tmp = G[i+1][j];
ll x = gcd(a[i], tmp.gval);
if(x == G[i][G[i].size()-1].gval)
G[i][G[i].size()-1].r = tmp.r;
else G[i].push_back(node(i, tmp.l, tmp.r, x));
}
}
top = 0;
for(ll i = 1 ; i <= n; i++)
for(ll j = 0; j < (ll)G[i].size(); j++)
p[++top] = G[i][j];
sort(p+1, p+top+1);
sum[0] = 0;
for(ll i = 1; i <= top; i++) sum[i] = sum[i-1] + (ll)p[i].r-(ll)p[i].l+1LL;
cnt[1] = 1;
for(ll i = 2; i <= top; i++) cnt[i] = cnt[i-1] + (p[i-1].gval!=p[i].gval);
}
ll F(ll l, ll r){
ll z = 0, y = G[l].size()-1;
// putchar('&');for(ll i =0;i<G[l].size(); i++)pt(G[l][i].gval),putchar(' ');puts("");
while(z < y)
{
ll mid = (z+y)>>1;
// prllf("(%d,%d)\n", z, y);
if(G[l][mid].r < r)
z = mid+1;
else
y = mid;
}
return G[l][z].gval;
}
void Rank(ll l, ll r){
// puts("2--");
ll x = F(l,r);
// puts("**");
node tmp = node(-inf, 0, 0, x); //1
ll now1 = lower_bound(p+1, p+1+top, tmp) - p;
ans.first = (ll)cnt[now1];
tmp = node(l, l, r, x);
ll now2 = lower_bound(p+now1, p+1+top, tmp) - p;
ans.second = sum[now2-1] - sum[now1-1] + (ll)r - (ll)p[now2].l + 1LL;
// puts("end2");
}
void Select(ll k1, ll k2){
// puts("3--");
ans.first = -1;
if(cnt[top] < k1)return ;
ll L = lower_bound(cnt + 1,cnt + top + 1,k1) - cnt;
ll R = upper_bound(cnt + 1,cnt + top + 1,k1) - cnt - 1;
if(sum[R] - sum[L-1] < (ll)k2) return ;
ll pos = lower_bound(sum+L, sum+R+1, (ll)k2 + sum[L-1]) - sum;
ll tx = sum[pos] - sum[L-1] - (ll)k2;
ans.first = (ll)p[pos].pos;
ans.second = (ll)p[pos].r - tx;
// puts("end3");
}
void input(){
rd(n); rd(que);
for(ll i = 1; i <= n; i++) {
rd(a[i]);
G[i].clear();
}
G[0].clear();
}
int main(){
char s[10];
ll T, Cas = 1, l, r; rd(T);
while(T--){
input();
printf("Case #%I64d:\n", Cas++);
precal();
while(que--){
scanf("%s", s);
rd(l); rd(r);
// prllf("(%d,%d)\n", l, r);
if(s[0] == 'R') {
Rank(l, r);
pt(ans.first); putchar(' '); pt(ans.second); putchar('\n');
}
else {
Select(l, r);
if(ans.first == -1)puts("-1");
else {pt(ans.first); putchar(' '); pt(ans.second); putchar('\n');}
}
}
}
return 0;
}
/*
1
3 6
6 2 4
RANK 1 1
SELECT 3 1
RANK 2 3
SELECT 2 2
SELECT 1 3
SELECT 1 4 */

HDU 5042 GCD pair 预处理+二分 分段的更多相关文章

  1. HDU 5726 GCD(RMQ+二分)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5726 题意:给出一串数字,现在有多次询问,每次询问输出(l,r)范围内所有数的gcd值,并且输出有多 ...

  2. hdu 5930 GCD 线段树上二分/ 强行合并维护信息

    from NOIP2016模拟题28 题目大意 n个点的序列,权值\(<=10^6\) q个操作 1.单点修改 2.求所有区间gcd中,不同数个数 分析 1.以一个点为端点,向左或向右的gcd种 ...

  3. HDU 5726 GCD 区间GCD=k的个数

    GCD Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  4. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  5. HDU 3622 Bomb Game(二分+2-SAT)

    Bomb Game Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. HDU 5877 Weak Pair(弱点对)

    HDU 5877 Weak Pair(弱点对) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Jav ...

  7. 树形DP+树状数组 HDU 5877 Weak Pair

    //树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...

  8. hdu 3433 A Task Process 二分+dp

    A Task Process Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. HDU 6697 Closest Pair of Segments (计算几何 暴力)

    2019 杭电多校 10 1007 题目链接:HDU 6697 比赛链接:2019 Multi-University Training Contest 10 Problem Description T ...

随机推荐

  1. BZOJ 3674 可持久化并查集加强版(主席树变形)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 2515  Solved: 1107 [Submit][Sta ...

  2. [luogu_P2045]方格取数加强版

    [luogu_P2045]方格取数加强版 试题描述 给出一个 \(n \times n\) 的矩阵,每一格有一个非负整数 \(A_{i,j},(A_{i,j} \le 1000)\) 现在从 \((1 ...

  3. [SDOI2009][bzoj1878] HH的项链 [莫队模板题]

    题面: 传送门 思路: 就是一道莫队的模板题目...... 开一个1000000的数组记录每个数出现的次数,然后每次从1到0或者从0到1更新答案 莫队讲解看这里:莫队 Code: #include&l ...

  4. list dict 性能测试

    from random import randint def load_list_data(total_nums, target_nums): """ 从文件中读取数据, ...

  5. POJ 1236 Network of Schools Tarjan缩点

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22729   Accepted: 89 ...

  6. 局部a链接样式

    原文发布时间为:2010-01-16 -- 来源于本人的百度文章 [由搬家工具导入] <style type="text/css"> <!--默认页面链接-> ...

  7. [LeetCode] Maximum Product Subarray 连续数列最大积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  8. python 安装cx_Oracle模块, MySQLdb模块, Tornado

    一,想访问远程Oracle数据库,本地又不想安装几百兆的Oracle Client(也木有root权限),安装python的cx_Oralce 模块需要依赖Oracle Instant Client ...

  9. K皇后问题递归解法

      #include<iostream> #include<cmath> #include<ctime> using namespace std; bool che ...

  10. [Python Cookbook] Numpy Array Slicing and Indexing

    1-D Array Indexing Use bracket notation [ ] to get the value at a specific index. Remember that inde ...