[TC_SRM_466]DrawingBlackCrosses
[TC_SRM_466]DrawingBlackCrosses
试题描述
\(n \times m\)(\(n, m \le 20\))的棋盘
其中至多有 \(8\) 个格子为黑色,其他格子为白色
每次可以选一个白格子把它所在的行、列包括它本身变成黑色
求把棋盘全变成黑色的操作方案数
输入
传给你一个 string[] 类型的参数
输出
返回一个整数表示答案
输入示例
{"B..B", "B.B.", "...B", "BB.B", "...."}
输出示例
Returns: 324
数据规模及约定
见“试题描述”
题解
由于黑格子不超过 \(8\) 个,并且每次操作都是整行整列变黑,所以可以任意交换行列,不会影响最终结果。
于是我们可以把它交换成左上角最多 \(8 \times 8\) 区域内有黑格子,剩下一个反 \(L\) 型的全白区域。
对于全白区域,我们只需要关心它有几行几列就行了;而对于有黑格子的地方就需要用状压。
于是令 \(f(s_x, s_y, i, j)\) 表示对于有黑格子的区域行覆盖的集合是 \(s_x\),列覆盖集合为 \(s_y\),全白区域覆盖了 \(i\) 行 \(j\) 列,然后转移显然。
最后累计答案时需要开个数组模拟一下确定哪些状态是最终状态。(好像也可以看哪些状态没有后继状态吧,这样快一点,但是我不管了。这题搞了我一个上午,弄得我生活不能自理)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <vector>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)
const int maxspace = 12010101, maxn = 21, MOD = 1000000007;
#define LL long long
int n, m, bn, bm, sn, sm, _x[maxn*maxn], _y[maxn*maxn], cb, xnum[maxn*maxn], ynum[maxn*maxn];
char Map[maxn][maxn];
bool g[maxn][maxn], tg[maxn][maxn];
int F[maxspace];
#define f(si, sj, i, j) F[(si)*(sm+1)*(n-bn+1)*(m-bm+1)+(sj)*(n-bn+1)*(m-bm+1)+(i)*(m-bm+1)+(j)]
class DrawingBlackCrosses {
public:
int count(vector <string> field) {
n = field.size(); m = field[0].length();
rep(i, 0, n - 1) strcpy(Map[i], field[i].c_str());
rep(i, 0, n - 1) rep(j, 0, m - 1) if(Map[i][j] == 'B') {
_x[cb] = i; _y[cb++] = j;
xnum[bn++] = i; ynum[bm++] = j;
}
sort(xnum, xnum + bn); sort(ynum, ynum + bm);
bn = unique(xnum, xnum + bn) - xnum; bm = unique(ynum, ynum + bm) - ynum;
sn = (1 << bn) - 1; sm = (1 << bm) - 1;
rep(i, 0, cb - 1) {
_x[i] = lower_bound(xnum, xnum + bn, _x[i]) - xnum;
_y[i] = lower_bound(ynum, ynum + bm, _y[i]) - ynum;
g[_x[i]][_y[i]] = 1;
}
int sx = 0, sy = 0, fullx = 0, fully = 0; // all_black
rep(i, 0, n - 1) {
bool ab = 1;
rep(j, 0, m - 1) if(!g[i][j]){ ab = 0; break; }
if(ab && i < bn) sx |= 1 << i;
ab = 1;
rep(j, 0, bm - 1) if(!g[i][j]){ ab = 0; break; }
if(i < bn) fullx |= (int)ab << i;
}
rep(j, 0, m - 1) {
bool ab = 1;
rep(i, 0, n - 1) if(!g[i][j]){ ab = 0; break; }
if(ab && j < bm) sy |= 1 << j;
ab = 1;
rep(i, 0, bn - 1) if(!g[i][j]){ ab = 0; break; }
if(j < bm) fully |= (int)ab << j;
}
f(sx, sy, n - bn, m - bm) = 1;
rep(si, 0, sn) rep(sj, 0, sm) dwn(i, n - bn, 0) dwn(j, m - bm, 0) if(f(si, sj, i, j)) {
int now = f(si, sj, i, j), tsi, tsj, ti, tj;
rep(ini, 0, bn) rep(inj, 0, bm) {
if(ini < bn) tsi = si | (1 << ini), ti = i;
else tsi = si, ti = i - 1;
if(inj < bm) tsj = sj | (1 << inj), tj = j;
else tsj = sj, tj = j - 1;
if(ini < bn && inj < bm && !g[ini][inj] && !(si >> ini & 1) && !(sj >> inj & 1)) (f(tsi, tsj, ti, tj) += now) %= MOD;
if(ini < bn && inj == bm && !(si >> ini & 1) && j > 0) (f(tsi, tsj, ti, tj) += (LL)now * j % MOD) %= MOD;
if(ini == bn && inj < bm && i > 0 && !(sj >> inj & 1)) (f(tsi, tsj, ti, tj) += (LL)now * i % MOD) %= MOD;
if(ini == bn && inj == bm && i > 0 && j > 0) (f(tsi, tsj, ti, tj) += (LL)now * i % MOD * j % MOD) %= MOD;
}
}
int ans = 0;
rep(si, 0, sn) rep(sj, 0, sm) rep(i, 0, n - bn) rep(j, 0, m - bm) if(f(si, sj, i, j)) {
memcpy(tg, g, sizeof(g));
rep(x, 0, bn - 1) if(si >> x & 1)
rep(y, 0, m - 1) tg[x][y] = 1;
rep(y, 0, bm - 1) if(sj >> y & 1)
rep(x, 0, n - 1) tg[x][y] = 1;
dwn(x, n - 1, n - (n - bn - i)) rep(y, 0, m - 1) tg[x][y] = 1;
dwn(y, m - 1, m - (m - bm - j)) rep(x, 0, n - 1) tg[x][y] = 1;
bool all1 = 1;
rep(x, 0, n - 1) rep(y, 0, m - 1) if(!tg[x][y]){ all1 = 0; break; }
if(all1) (ans += f(si, sj, i, j)) %= MOD;
}
return ans;
}
};
[TC_SRM_466]DrawingBlackCrosses的更多相关文章
随机推荐
- CentOS替换系统自带JDK
1.解压jdk安装包到/opt 下 /opt/jdk1.8.0_181 2.编辑/etc/profile, 增加如下内容 export JAVA_HOME=/opt/jdk1.8.0_181expor ...
- 从多个textarea中随机选取一个内容
<div id="IMContentTest"> <textarea name="IMContent" class="IMClass ...
- ASP.NET Core模块化前后端分离快速开发框架介绍之2、快速创建一个业务模块
源码地址 GitHub:https://github.com/iamoldli/NetModular 演示地址 地址:https://nm.iamoldli.com 账户:admin 密码:admin ...
- inotifywait实时监控文件目录
一.inotify简介 inotify 是一种强大的.细粒度的.异步文件系统监控机制,它满足各种各样的文件监控需要,可以监控文件系统的访问属性.读写属性.权限属性.创建删除.移动等操作,也可以监控文件 ...
- 【PHP】Thinkphp 七牛云API对接
访问一个网站,图片的流量占的比例是非常高的!在你的服务器硬盘上,图片占的容量也是非常高的. 如果要搞一个图片非常多,用户量又很庞大的网站,那么,得花多少钱烧在服务器上? 这种时候,当然要用第三方图片存 ...
- python3 提成计算
题目 企业发放的奖金根据利润提成. 利润(I)低于或等于10万元时,奖金可提10%: 利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%: 20万到4 ...
- Nosql和RDBMS的比较及解释
概述 传统的关系型数据库以及数据仓库在面对大数据的处理时显得越来越力不从心.因为关系数据库管理系统 (RDBMS)的设计从未考虑过能够处理日益增长且格式多变的数据,以及访问数据并进行分析的用户需求呈爆 ...
- Essential C++ 3.1 节的代码练习——哨兵方式
#include "IncrementArray.hpp" template <typename element> element *find_address(elem ...
- A Bug's Life POJ - 2492 (带权并查集)
A Bug's Life POJ - 2492 Background Professor Hopper is researching the sexual behavior of a rare spe ...
- ubuntu下eclipse c++开发
linux下eclipse运行C++程序出现Launch Failed. Binary Not Found.错误 在unbutu16.04上安装eclipse c++,运行一个hello world程 ...