OCR光学字符识别--STN-OCR 测试
1、同文章中建议的使用ubuntu-python隔离环境,真的很好用
参照:http://blog.topspeedsnail.com/archives/5618
启动虚拟环境:
source env/bin/activate
退出虚拟环境:
deactivate
注意:下面的操作全部都要在隔离环境中完成
2、搭建虚拟环境
pip install -r(requests)应该是安装request中所有的包
pip install Cython == 0.26
sudo apt-get install python3-dev
editdistance == 0.3.13、
3、
参照,编译百度warpctc
http://blog.csdn.net/amds123/article/details/73433926
git clone
https://github.com/baidu-research/warp-ctc.git
cd warp-ctc
mkdir build
cd build
cmake ..
make
sudo make install
执行文章中snt-orc
mxnet/metrics/ctc` and run `python setup.py build_ext --inplace`
4、
编译MXNET:
git clonr --recursive mxnet
cd mxnet
git tag
git checkout v0.9.3
按照论文中的方法编译失败,只能下载新版本编译
新版本编译步骤参考:https://www.bbsmax.com/A/A7zgqGk54n/
安装依赖:
$ sudo apt-get install -y build-essential git
$ sudo apt-get install -y libopenblas-dev
$ sudo apt-get install -y libopencv-dev
git clone --recursive https://github.com/dmlc/mxnet.git
cd mxnet
cp make/*.ck ./(编译选项文件)
vim *(按需修改编译文件)文章要求加入warpctc
https://mxnet.incubator.apache.org/tutorials/speech_recognition/baidu_warp_ctc.html
make -j4
5、
编译python接口参照
http://blog.csdn.net/zziahgf/article/details/72729883
编译 MXNet的Python API:
安装所需包
sudo apt-get install -y python-dev python-setuptools python-numpy
cd python
sudo python setup.py install
6、
下载stn-orc网络:https://github.com/Bartzi/stn-ocr
这个网络感觉跟FCN使用差不多,应该不需要什么格外操作
7、
下载model
https://bartzi.de/research/stn-ocr
中的文本识别:会有model文件夹,测试数据集
model文件夹中有两个文件
*.params是模型文件,*.json应该是网络描述文件
测试数据集中有图片文件夹,gt文件,还有一个不知道是什么用
还需要一个文件stn-orc网络中data文件对应‘文本’中应有个char_map文件,后面需要
模型预测代码就是stn-orc文件下的eva的py代码,看名字就知道,不过由于之前下载的是新版本,跟文中不同,所以使用这里的py文件没有运行成功,仿照文件自己写了一个简单的测试文件:
import matplotlib.pyplot as plt import argparse
import csv
import json
import os
from collections import namedtuple from PIL import Image import editdistance
import mxnet as mx
import numpy as np from callbacks.save_bboxes import BBOXPlotter
from metrics.ctc_metrics import strip_prediction
from networks.text_rec import SVHNMultiLineCTCNetwork
from operations.disable_shearing import *
from utils.datatypes import Size Batch = namedtuple('Batch', ['data']) #后缀都不能加的,程序自己添加,似乎同时加载两个文件
sym,arg_params,aux_params = mx.model.load_checkpoint('./testxt/model/model',2)
#这里面应该是训练的参数
#print(arg_params)
net, loc, transformed_output, size_params = SVHNMultiLineCTCNetwork.get_network((1,1,64,200),Size(50,50),46,2,23)
output = mx.sym.Group([loc, transformed_output, net]) #靠 在这里预定义的话,TMD,soft 层怎么办?
mod = mx.mod.Module(output,context=mx.cpu(),data_names=['data',
'softmax_label',
'l0_forward_init_h_state',
'l0_forward_init_c_state_cell',
'l1_forward_init_h_state',
'l1_forward_init_c_state_cell' ],label_names=[])
mod.bind(for_training=False,grad_req='null',data_shapes=[
('data',(1,1,64,200)),
('softmax_label', (1,23)),
('l0_forward_init_h_state', (1, 1, 256)),
('l0_forward_init_c_state_cell', (1, 1, 256)),
('l1_forward_init_h_state', (1, 1, 256)),
('l1_forward_init_c_state_cell', (1, 1, 256))
])
arg_params['l0_forward_init_h_state'] = mx.nd.zeros((1, 1, 256))
arg_params['l0_forward_init_c_state_cell'] = mx.nd.zeros((1, 1, 256))
arg_params['l1_forward_init_h_state'] = mx.nd.zeros((1, 1, 256))
arg_params['l1_forward_init_c_state_cell'] = mx.nd.zeros((1, 1, 256))
mod.set_params(arg_params, aux_params) #看看怎么加载label
#一个映射文件,类似caffe中的label,在下面循环中用到
with open('/home/lbk/python-env/stn-ocr/mxnet/testxt/ctc_char_map.json') as char_map_file:
char_map = json.load(char_map_file)
reverse_char_map = {v: k for k, v in char_map.items()}
print(len(reverse_char_map)) with open('/home/lbk/python-env/stn-ocr/mxnet/testxt/icdar2013_eval/one_gt.txt') as eval_gt:
reader = csv.reader(eval_gt,delimiter=';')
for idx,line in enumerate(reader):
file_name = line[0]
label = line[1].strip()
gt_word = label.lower()
print(gt_word)
#这一步又是干什么的
#dict.get(key,default)查找,不存在返回default
label = [reverse_char_map.get(ord(char.lower()),reverse_char_map[9250]) for char in gt_word]
label+=[reverse_char_map[9250]]*(23-len(label))
#print(label)
the_image = Image.open(file_name)
the_image = the_image.convert('L')
the_image = the_image.resize((200,64), Image.ANTIALIAS)
image = np.asarray(the_image, dtype=np.float32)[np.newaxis, np.newaxis, ...]
image/=255
temp = mx.nd.zeros((1,1,256))
label = mx.nd.array([label])
image = mx.nd.array(image)
print(type(temp),type(label))
input_batch = Batch(data=[image,label,temp,temp,temp,temp]) mod.forward(input_batch,is_train=False)
print(len(mod.get_outputs()))
print('0000',mod.get_outputs()[2])
predictions = mod.get_outputs()[2].asnumpy()
predicted_classes = np.argmax(predictions,axis=1)
print(len(predicted_classes))
print(predicted_classes) predicted_classes = strip_prediction(predicted_classes, int(reverse_char_map[9250]))
predicted_word = ''.join([chr(char_map[str(p)]) for p in predicted_classes]).replace(' ', '')
print(predicted_word) distance = editdistance.eval(gt_word, predicted_word)
print("{} - {}\t\t{}: {}".format(idx, gt_word, predicted_word, distance)) results = [prediction == label for prediction, label in zip(predicted_word, gt_word)]
print(results)
补充:
学习MXNET:
http://www.infoq.com/cn/articles/an-introduction-to-the-mxnet-api-part04
http://blog.csdn.net/yiweibian/article/details/72678020
http://ysfalo.github.io/2016/04/01/mxnet%E4%B9%8Bfine-tune/
http://shuokay.com/2016/01/01/mxnet-memo/
OCR光学字符识别--STN-OCR 测试的更多相关文章
- Ocrad.js – JS 实现 OCR 光学字符识别
Ocrad.js 相当于是 Ocrad 项目的纯 JavaScript 版本,使用 Emscripten 自动转换.这是一个简单的 OCR (光学字符识别)程序,可以扫描图像中的文字回文本. 不像 G ...
- 非黑即白--谷歌OCR光学字符识别
# coding=utf-8 #非黑即白--谷歌OCR光学字符识别 # 颜色的世界里,非黑即白.computer表示深信不疑. # 今天研究一下OCR光学识别庞大领域中的众多分支里的一个开源项目的一个 ...
- [Xcode 实际操作]七、文件与数据-(22)使用OCR光学字符识别技术识别银行卡号码
目录:[Swift]Xcode实际操作 本文将演示如何使用光学字符识别技术,识别信用卡上的卡号. OCR技术是光学字符识别的缩写(Optical Character Recognition), 是通过 ...
- 6 个优秀的开源 OCR 光学字符识别工具
转自:http://sigvc.org/bbs/thread-870-1-1.html 纸张在许多地方已日益失宠,无纸化办公谈论40多年,办公环境正限制纸山的生成.而过去几年,无纸化办公的概念发生了显 ...
- 开源OCR光学字符识别
纸张在 许多地方已日益失宠,无纸化办公谈论40多年,办公环境正限制纸山的生成.而过去几年,无纸化办公的概念发生了显着的转变.在计算机软件的帮助 下,包含大量重要管理数据和资讯的文档可以更方便的以电子形 ...
- IT行业新名词--透明手机/OCR(光学字符识别)/夹背电池
透明手机 机身设计的一大关键部分是可替换玻璃的使用,利用导电技术,在看不到线路的环境下,让LED发光. 这样的玻璃内含液晶分子,对于内容的显示则是通过电流对分子的刺激来实现.当手机断电后,分子位置会随 ...
- 【OCR技术系列一】光学字符识别技术介绍
注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一]字符识别技术总览,详情见文末参考文献 什么是 OCR? OCR(Optical Character Recognition,光学字符识别 ...
- Tesseract:简单的Java光学字符识别
1.1 介绍 开发具有一定价值的符号是人类特有的特征.对于人们来说识别这些符号和理解图片上的文字是非常正常的事情.与计算机那样去抓取文字不同,我们完全是基于视觉的本能去阅读它们. 另一方面,计算机的工 ...
- 光学字符识别OCR
1.功能: 光学字符识别(OCR,Optical Character Recognition)是指对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程 2.典型应用: 名片扫描 3 ...
随机推荐
- 关于npm无法安装依赖包以及安装包缓慢的解决方法
因为npm的服务器在国外,导致我们使用npm安装第三方包缓慢.而且有的第三方包是被墙的. 因此,作为墙内人,必须解决这个问题,否则开发起来实在是太坑了! 推荐大家使用淘宝的镜像(cnpm),它以每10 ...
- MyEclipse导入外部项目
1,File 2,Preferences 3,General----Existing----next 4,Browse选择要导入的项目---finash 5,导入后可能会出现很多error 检查项目的 ...
- SecureCRT设置每次连接使用后的日志
- Andriod Atom x86模拟器启动报错
用Inter Atom模式的Android模拟器启动报一下错误: Starting emulator for AVD 'new' emulator: ERROR: x86 emulation curr ...
- centos中httpd Server not started: (13)Permission denied: make_sock: could not bind to address [::]:8888
Install semanage tools: sudo yum -y install policycoreutils-python Allow port 88 for httpd: sudo sem ...
- 聊聊、Zookeeper Windows启动
Apache ZooKeeper is an effort to develop and maintain an open-source server which enables highly rel ...
- xamarin.android 消息推送功能--极光推送
最近在使用xamarin.android的消息推送功能,官方使用的例子是FCM方式,按照官方文档,使用FQ软件是可以成功的,但是在国内由于众所周知的原因,在国内服务并不能使用,于是查找国内各自推送平台 ...
- Java Web开发(JSP、Servlet)乱码的一揽子解决方案
千万不要看网上那些杂七杂八的解决乱码的文章,解决乱码最好的方法是(没有之一):在所有地方统一采用UTF-8编码. 这其中包括: 1 - 工程 如果使用的是Eclipse,那么打开Preference, ...
- mac 安装 gensim包出错
安装时需要卸载scipy,结果显示 permission之类 加sudo也不行, 必须 得先disable 掉mac的SIP ,方法是重启系统 ,按住command+r ,进行recovers模式,然 ...
- ArcGIS教程:公布地理处理服务
要公布地理处理服务.您须要两个元素:结果 窗体中的结果和到 ArcGIS Server 的管理员或公布者连接. 要公布服务,请右键单击结果并选择共享为 > 地理处理服务.例如以下图所看到的.此操 ...