洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)
这题的思路好清奇
因为只有一次查询,我们考虑二分这个值为多少
将原序列转化为一个$01$序列,如果原序列上的值大于$mid$则为$1$否则为$0$
那么排序就可以用线段树优化,设该区间内$1$的个数为$res$,如果是升序排序,只要把$[r-res+1,r]$区间全部变为$1$,$[l,r-res]$区间全部变为$0$即可,用线段树区间覆盖即可
那么只要最后查询$k$的位置上是否是$1$,如果是的话$ans=mid,l=mid+1$,否则$r=mid-1$
考虑为什么能这样二分。我们经过这样之后,如果最后位置$k$上为$1$,那么这肯定是一个大于等于$mid$的数,否则肯定是一个小于$mid$的数
然后差不多了
//minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
struct Q{
int op,l,r;
Q(){}
Q(int op,int l,int r):op(op),l(l),r(r){}
}q[N];
int n,m,st[N],val[N],tag[N<<],sum[N<<],k;
inline void upd(int p){sum[p]=sum[p<<]+sum[p<<|];}
inline void pd(int p,int l,int r){
if(~tag[p]){
tag[p<<]=tag[p<<|]=tag[p];
sum[p<<]=tag[p]*l,sum[p<<|]=tag[p]*r;
tag[p]=-;
}
}
void build(int p,int l,int r){
tag[p]=-;
if(l==r) return (void)(sum[p]=st[l]);
int mid=(l+r)>>;
build(p<<,l,mid),build(p<<|,mid+,r);
upd(p);
}
void update(int p,int l,int r,int ql,int qr,int val){
if(ql<=l&&qr>=r) return (void)(sum[p]=val*(r-l+),tag[p]=val);
int mid=(l+r)>>;
pd(p,mid-l+,r-mid);
if(ql<=mid) update(p<<,l,mid,ql,qr,val);
if(qr>mid) update(p<<|,mid+,r,ql,qr,val);
upd(p);
}
int query(int p,int l,int r,int ql,int qr){
if(ql<=l&&qr>=r) return sum[p];
int mid=(l+r)>>;
pd(p,mid-l+,r-mid);
int res=;
if(ql<=mid) res+=query(p<<,l,mid,ql,qr);
if(qr>mid) res+=query(p<<|,mid+,r,ql,qr);
return res;
}
int check(int mid){
for(int i=;i<=n;++i)
st[i]=val[i]>=mid?:;
build(,,n);
for(int i=;i<=m;++i){
int l=q[i].l,r=q[i].r;
if(q[i].op==){
int res=query(,,n,l,r);
update(,,n,r-res+,r,);
update(,,n,l,r-res,);
}else{
int res=query(,,n,l,r);
update(,,n,l,l+res-,);
update(,,n,l+res,r,);
}
}
return query(,,n,k,k);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;++i) val[i]=read();
for(int i=,op,l,r;i<=m;++i)
op=read(),l=read(),r=read(),q[i]=Q(op,l,r);
k=read();
int l=,r=n,ans=;
while(l<=r){
int mid=(l+r)>>;
if(check(mid)) l=mid+,ans=mid;else r=mid-;
}
printf("%d\n",ans);
return ;
}
洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)的更多相关文章
- 洛谷$P2824\ [HEOI2016/TJOI2016]$ 排序 线段树+二分
正解:线段树+二分 解题报告: 传送门$QwQ$ 昂着题好神噢我$jio$得$QwQQQQQ$,,, 开始看到长得很像之前考试题的亚子,,,然后仔细康康发现不一样昂$kk$,就这里范围是$[1,n]$ ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告
P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...
- [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)
题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 (线段树合并)
(另外:题解中有一种思路很高妙而且看上去可以适用一些其他情况的离线方法) 线段树合并&复杂度的简单说明:https://blog.csdn.net/zawedx/article/details ...
- [洛谷P2824][HEOI2016/TJOI2016]排序
题目大意:一个全排列,两种操作: 1. $0\;l\;r:$把$[l,r]$升序排序2. $1\;l\;r:$把$[l,r]$降序排序 最后询问第$k$位是什么 题解:二分答案,把比这个数大的赋成$1 ...
- Luogu P2824 [HEOI2016/TJOI2016]排序 线段树+脑子
只会两个$log$的$qwq$ 我们二分答案:设答案为$ans$,则我们把$a[i]<=ans$全部设成$0$,把$a[i]>ans$全部设成$1$,扔到线段树里,这样区间排序(升序)就是 ...
- day 1 晚上 P2824 [HEOI2016/TJOI2016]排序 线段树
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #inclu ...
- [HEOI2016/TJOI2016]排序 线段树+二分
[HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...
- BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)
题目链接 对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树.初始时就是\(n\)棵. 对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并. 对于升 ...
随机推荐
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- Django学习之站点缓存详解
本文和大家分享的主要是django缓存中站点缓存相关内容,一起来看看吧,希望对大家学习django有所帮助. 缓存整个站点,是最简单的缓存方法 在 MIDDLEWARE_CLASSES 中加入 “ ...
- Codeforces 126D Fibonacci Sums 求n由随意的Sum(fib)的方法数 dp
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/qq574857122/article/details/34120269 题目链接:点击打开链接 题意 ...
- MVC设计模式应用
MVC登录程序清单 1 User JAVABean 用户登录操作类,跟数据库中表的信息对应 2 DatabaseConnection JavaBean 负责数据库的连接和关闭操作 3 IUserDAO ...
- BestCoder6 1002 Goffi and Squary Partition(hdu 4982) 解题报告
题目链接:http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?pid=1002&cid=530 (格式有一点点问题,直接粘 ...
- Object.prototype.constructor
Returns a reference to the Object function that created the instance's prototype. 注意这个属性的值是函数本省的引用,而 ...
- codeforces 702D D. Road to Post Office(数学)
题目链接: D. Road to Post Office time limit per test 1 second memory limit per test 256 megabytes input ...
- python 基础之第五天
###########window路径写法########## In [1]: winpath = 'C:\tmp' In [2]: print winpath C: mp In [3]: winpa ...
- <十三>UML核心视图静态视图之业务用例图
一:uml的核心视图 --->如果说UML是一门语言,上一章学习的参与者等元素是uml的基本词汇,那么视图就是语法.uml通过视图将基元素组织在一起,形成有意义的句子. --->uml可视 ...
- php之上传图片及传数据到mysql
index.html <form action="php.php" method="post" enctype="multipart/form- ...