Installing Apps Kattis - installingapps (贪心 + 背包)
Installing Apps Kattis - installingapps
Sandra recently bought her first smart phone. One of her friends suggested a long list of applications (more commonly known as “apps”) that she should install on the phone. Sandra immediately started installing the apps from the list, but after installing a few, the phone did not have enough disk space to install any more apps. Sometimes, the app installation failed because there was not even enough space to download the installation package. Other apps could be downloaded just fine, but had insufficient space to store the installed app.
Each app that Sandra installs has a download size dd and a storage size ss. To download the app, Sandra’s phone must have at least dd megabytes of free disk space. After the app has been installed, it then uses ss megabytes of disk space on the phone. The download size may be smaller than the storage size (e.g., if the app data is heavily compressed) or larger than the storage size (e.g., if the download contains material that might not get used such as translations to different languages). The installer is very efficient and can transform the downloaded package to an installed app without using any extra disk space. Thus, to install an app, the phone must have at least max(d,s)max(d,s) megabytes of free disk space.
Sandra quickly realised that she may have run out of space just because she installed apps in the wrong order. Thus, she decided to give the installation another try. She uninstalled all apps, and will now choose an installation order that lets her install the largest number of apps from the list. Sandra may not install any app more than once.
Help her determine what apps on the list she should install, and in what order.
Input
The input consists of:
One line with two integers nn, cc (1≤n≤500,1≤c≤100001≤n≤500,1≤c≤10000), the number of available apps and the available disk space of the phone in megabytes.
nn lines, each with two integers d,sd,s (1≤d,s≤100001≤d,s≤10000), the download size and storage size of an app, in megabytes.
Output
Output one line with the maximum number of apps that can be installed. Then output one line listing the numbers of those apps, in the order that Sandra should install them. In the case that no apps can be installed, this line can be omitted.
The apps are numbered from 11 to nn, in the order they are given in the input. If there are multiple optimal solutions, output any one of them.
Sample Input 1 | Sample Output 1 |
---|---|
2 100 |
2 |
Sample Input 2 | Sample Output 2 |
---|---|
2 100 |
0 |
题意:一个内存为V 的手机可以安装一些app,每一个app有两个不同的数值,表示已开始下载的大小和安装完以后的大小(必须下载的和安装后的大小都比手机的剩余容量要小才可以放进去),问最多可以放进去几个app,和放进去背包的一些顺序
题解:这是一个背包问题,但是普通的背包拿去是没有顺序关系的,这道题拿去的顺序关系是有关系的,前面的一个的拿去是有可能会影响后面一个app的,所以要先贪心一下。具体的贪心操作是按照d-s的大小来排序,就是下载的和安装后的相减的值的从大到小排序。为什么要这样来贪心我的理解是容量的改变多的话如果放在后面,他由于改变的多了会更加容易影响。同时这道题在uva上好像不能ac,可能是uva的数据源出问题了
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; typedef long long ll;
const int MAXN=1e4+5;
const double EPS=1e-8;
const int INF=0x3f3f3f3f;
const int MOD = 1e9+7;
struct Node{
int d,s,id;
}a[MAXN];
int f[505][MAXN],n,V;
bool cmp(const Node a, const Node b){
return (a.d - a.s) > (b.d - b.s);
//return a.s < b.s;
}
int main(){ ios::sync_with_stdio(false);
while(cin >> n >> V)
{
for(int i=1;i<=n;i++)
{
cin >> a[i].d >> a[i].s;
a[i].id = i;
}
sort(a+1,a+n+1,cmp);
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
{
for(int j=V;j>=0;j--)
{
f[i][j] = f[i-1][j];
if(V-(j-a[i].s) < a[i].d)
continue;
if(j < a[i].s)
continue;
f[i][j] = max(f[i-1][j], f[i-1][j-a[i].s]+1);
}
}
int Max = 0, v = 0;
for(int i=0;i<=V;i++)
{
if(f[n][i] > Max)
{
Max = f[n][i];
v = i;
}
}
cout << f[n][v] << "\n";
if(f[n][v] == 0) continue;
int q[MAXN],cnt = 0;
for(int i=n;i>=1&&v>0;i--)
{
if(f[i][v] == f[i-1][v-a[i].s]+1)
{
q[++cnt] = a[i].id;
v -= a[i].s;
}
}
for(int i=cnt;i>=1;i--)
{
cout << q[i] << " \n"[i==1] ;
}
}
return 0;
}
Installing Apps Kattis - installingapps (贪心 + 背包)的更多相关文章
- 【bzoj4922】[Lydsy六月月赛]Karp-de-Chant Number 贪心+背包dp
题目描述 给出 $n$ 个括号序列,从中选出任意个并将它们按照任意顺序连接起来,求以这种方式得到匹配括号序列的最大长度. 输入 第一行包含一个正整数n(1<=n<=300),表示括号序列的 ...
- HDU3466Proud Merchants(贪心&背包)
http://acm.hdu.edu.cn/showproblem.php?pid=3466 题目大意是说n个物品每个物品的花费是p,但是如果你现在的钱少于q就买不了这个物品,每个物品的价值是v,求有 ...
- HDU 5303 Delicious Apples(贪心 + 背包 2015多校啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5303 Problem Description There are n apple trees plan ...
- bzoj4922 [Lydsy1706月赛]Karp-de-Chant Number 贪心+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4922 题解 记录每一个串的没有匹配的右括号 \()\) 的数量为 \(a_i\),为匹配的左括 ...
- AT4120-[ARC096D]Sweet Alchemy【贪心,背包】
正题 题目链接:https://www.luogu.com.cn/problem/AT4120 题目大意 给出\(n\)个物品和一个容量\(m\),第\(i\)个物品体积为\(c_i\).除了第一个物 ...
- HDU 4003 [树][贪心][背包]
/* 大连热身A题 不要低头,不要放弃,不要气馁,不要慌张 题意: 给一棵树,每条边上有权值.给一个起点,放置n个机器人,要求使得任意一个节点至少被一个机器人经过. 每个机器人经过某条边时的代价为这条 ...
- POJ2392Space Elevator(贪心+背包)
Space Elevator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9970 Accepted: 4738 De ...
- 【贪心+背包】【HDU2546】【饭卡】
饭卡 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...
- sdut2408 pick apples (贪心+背包)山东省第三届ACM省赛
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/svitter/article/details/24642587 本文出自:http://blog.c ...
随机推荐
- phpcms Parse error: syntax error, unexpected T_ENCAPSED_AND_WHITESPACE错误
我在phpcms的模板中自定义了一个变量,变量的值是通过pc标签赋予的. <?php $url="{$v[url]}"; ?> 结果报如上错误. 实际上应把PHP语句改 ...
- SpringBoot | 第二十二章:定时任务的使用
前言 上两章节,我们简单的讲解了关于异步调用和异步请求相关知识点.这一章节,我们来讲讲开发过程也是经常会碰见的定时任务.比如每天定时清理无效数据.定时发送短信.定时发送邮件.支付系统中的定时对账等等, ...
- 利用XML序列化和Asp.Net Web缓存实现站点配置文件
我们经常会遇到这样的场景: 今天来了个业务,需要加一个字段,但是考虑的以后可能有变动,需要配成“活”的. 一般最初的做法就是加一个配置到Web.Config文件的AppSettings中去.但是这样有 ...
- a href="javascript:"与a href="#"
<a href="javascript:;"></a> <a href="#"></a> 这两种写法.这两种写法 ...
- C++ list类详解
转自:http://blog.csdn.net/whz_zb/article/details/6831817 双向循环链表list list是双向循环链表,,每一个元素都知道前面一个元素和后面一个元素 ...
- 安装express
就目前来说安装express需要走几个步骤,要不就会出现在检查版本的时候就会出现,expres不是内部的命令或者是这种 安装的步骤: 1. 先是输入npm install -g express-gen ...
- JQuery笔录
1.jQuery 的 hide() 函数,隐藏了 HTML 文档中所有的 <p> 元素.<script type="text/javascript">$(d ...
- StackOverflow之旅<2>------{HashMap和Hashtable的区别}
问题 在Java中HashMap和Hashtable的区别? 哪一个对于多线程应用程序更好? 回答 Hashtable是同步的,加了synchronized锁,而HashMap不是.没有加synchr ...
- 配置Maven镜像与本地缓存
IntelliJ IDEA 安装后自带Maven,也可以使用自己安装的Maven. 配置阿里镜像与本地仓库文件夹 找到Maven的安装目录 打开settings.xml配置文件 修改mirrors ...
- git版本管理工具 标签(Tag) / 版本回退 / 分支的简单使用
a.标签 标签,可以使用这个功能来标记发布结点. 举个例子, 假如我们的项目版本目前是1.2版本, 上级要求这个版本要在半个月后再进行上传至Appstore, 并要求我们未来的半个月内,去写1.3版本 ...