Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 8599    Accepted Submission(s): 4005

Problem Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
 
Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection
1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to
Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
 
Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
 
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 
Sample Output
50
 
Source
 解题报告
EK模板,不多说。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define inf 99999999
#define N 220
#define M 220
using namespace std;
int n,m,edge[N][N],flow,a[N],p[N];
queue<int>Q;
void ek()
{
while(1)
{
while(!Q.empty())
Q.pop();
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
Q.push(1);
a[1]=inf;
p[1]=1;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=1;v<=n;v++)
{
if(!a[v]&&edge[u][v]>0)
{
a[v]=min(a[u],edge[u][v]);
p[v]=u;
Q.push(v);
}
}
if(a[n])break;
}
if(!a[n])break;
for(int u=n;u!=1;u=p[u])
{
edge[p[u]][u]-=a[n];
edge[u][p[u]]+=a[n];
}
flow+=a[n];
}
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d",&m,&n))
{
flow=0;
memset(edge,0,sizeof(edge));
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
edge[u][v]+=w;
}
ek();
printf("%d\n",flow);
}
}

又学了Dinic算法。

。。

(基于邻接矩阵的)。前向星不知道怎么处理反向弧。。。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define inf 99999999
#define N 200
#define M 200
using namespace std;
int edge[N][N],flow,l[N],n,m;
int bfs()
{
memset(l,-1,sizeof(l));
queue<int>Q;
l[1]=0;
Q.push(1);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=1;v<=n;v++)
{
if(edge[u][v]&&l[v]==-1)
{
l[v]=l[u]+1;
Q.push(v);
}
}
}
if(l[n]>0)
return 1;
else return 0;
}
int dfs(int x,int f)
{
if(x==n)return f;
int a;
for(int i=1;i<=n;i++)
{
if(edge[x][i]&&(l[i]==l[x]+1)&&(a=dfs(i,min(f,edge[x][i]))))
{
edge[x][i]-=a;
edge[i][x]+=a;
return a;
}
}
return 0;
}
int main()
{
int i,j,u,v,w;
while(~scanf("%d%d",&m,&n))
{
memset(edge,0,sizeof(edge));
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
edge[u][v]+=w;
}
int a=0;
flow=0;
while(bfs())
while(a=dfs(1,inf))
flow+=a;
printf("%d\n",flow);
}
return 0;
}

最终觉醒了,之前看了一串非递归的前向星dinic,,。老认为不正确。,,换了一种思路,写成递归调用dfs和邻接表一样,对于处理反向弧加流的话在建边的时候处理,建边一次建两条,正向和反向,这样就知道。反向弧在哪里了,,。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define N 300
#define M 30000
#define inf 99999999
using namespace std;
struct node
{
int u,v,w,r,next;
}edge[M]; int n,m,head[N],l[N],cnt;
void add(int u,int v,int w)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
edge[cnt].r=cnt+1;
head[u]=cnt++;
edge[cnt].u=v;
edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].next=head[v];
edge[cnt].r=cnt-1;
head[v]=cnt++;
}
int bfs()
{
queue<int >Q;
while(!Q.empty())
Q.pop();
Q.push(1);
memset(l,-1,sizeof(l));
l[1]=0;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
if(edge[i].w&&l[edge[i].v]==-1)
{
l[edge[i].v]=l[u]+1;
Q.push(edge[i].v);
}
}
}
if(l[n]>0)return 1;
else return 0;
}
int dfs(int x,int f)
{
int i,a;
if(x==n)return f;
for(i=head[x];i!=-1;i=edge[i].next)
{
if(edge[i].w&&l[edge[i].v]==l[x]+1&&(a=dfs(edge[i].v,min(f,edge[i].w))))
{
edge[i].w-=a;
edge[edge[i].r].w+=a;
return a;
}
}
return 0;
}
int main()
{
int i,j,u,v,w;
while(cin>>m>>n)
{
memset(head,-1,sizeof(head));
memset(edge,0,sizeof(edge));
cnt=0;
for(i=0;i<m;i++)
{
cin>>u>>v>>w;
add(u,v,w);
}
int ans=0,a;
while(bfs())
while(a=dfs(1,inf))
ans+=a;
cout<<ans<<endl;
}
}


HDU1532_Drainage Ditches(网络流/EK模板/Dinic模板(邻接矩阵/前向星))的更多相关文章

  1. poj-1459-最大流dinic+链式前向星-isap+bfs+stack

    title: poj-1459-最大流dinic+链式前向星-isap+bfs+stack date: 2018-11-22 20:57:54 tags: acm 刷题 categories: ACM ...

  2. 【模板】链式前向星+spfa

    洛谷传送门--分糖果 博客--链式前向星 团队中一道题,数据很大,只能用链式前向星存储,spfa求单源最短路. 可做模板. #include <cstdio> #include <q ...

  3. 模板 Dijkstra+链式前向星+堆优化(非原创)

    我们首先来看一下什么是前向星.   前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和 ...

  4. zzuli 2131 Can Win dinic+链式前向星(难点:抽象出网络模型+建边)

    2131: Can Win Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 431  Solved: 50 SubmitStatusWeb Board ...

  5. 存图方式---邻接表&邻接矩阵&前向星

    基于vector存图 struct Edge { int u, v, w; Edge(){} Edge(int u, int v, int w):u(u), v(v), w(w){} }; vecto ...

  6. 网络流--最大流dinic模板

    标准的大白书式模板,除了变量名并不一样……在主函数中只需要用到 init 函数.add 函数以及 mf 函数 #include<stdio.h> //差不多要加这么些头文件 #includ ...

  7. 网络流--最大流--Dinic模板矩阵版(当前弧优化+非当前弧优化)

    //非当前弧优化版 #include <iostream> #include <cstdio> #include <math.h> #include <cst ...

  8. 网络流-最大流 Dinic模板

    #include <bits/stdc++.h> using namespace std; #define MP make_pair #define PB push_back #defin ...

  9. Drainage Ditches(网络流(EK算法))

    计算最大流,EK算法模板题. #include <stdio.h> #include <string.h> #include <queue> using names ...

随机推荐

  1. jQuery 遍历函数 ,javascript中的each遍历

    jQuery 遍历函数 jQuery 遍历函数包括了用于筛选.查找和串联元素的方法. 函数 描述 .add() 将元素添加到匹配元素的集合中. .andSelf() 把堆栈中之前的元素集添加到当前集合 ...

  2. 使用 Rails Webpacker 安裝 Foundation 6

    動機 由於 foundation-rails 6.4.1 版本有個 Issue 目前還沒合併.加上 Rails 已經支援了 webpack 2.x.這篇文章純粹紀錄另外一種做法. 準備 開始使用之前需 ...

  3. andorid studio 环境搭建

    1 安装jdk,配置jdk的环境变量http://www.cnblogs.com/liuhongfeng/p/4177568.html(通过java ,javac, java -version来察看j ...

  4. 【mysql优化 3】嵌套循环连接算法

    原文地址:Nested-Loop Join Algorithms mysql在表之间执行连接操作,包括了使用循环嵌套算法或者其他在此基础上的变形. 循环嵌套连接算法: 一个简单的嵌套循环连接(NLJ: ...

  5. [POI2005]SKA-Piggy Banks (Tarjan缩点)

    题目链接 Solution \(Tarjan\) 缩点乱搞. 考虑到环内如果有一个被打开,那么也就全部打开了. 然后很显然入度为 \(0\) 的点需要被砸破. 所以缩点之后找到入度为 \(0\) 的即 ...

  6. java 时间戳与date转换

    1.时间戳转换为date long sjc=1442633777; SimpleDateFormat t = new SimpleDateFormat("yyyyMMddHHmmss&quo ...

  7. mod性质 学习笔记

    mod性质小结 \(a\equiv b(\mod m)\) $ \rightarrow \( \)a-b=k*m,k\in Z$ \(a\equiv b且c\equiv d(\mod m)\) \(\ ...

  8. La 3942 字符串+dp

    题目大意:一个字符串,可以分解成若干英语单词的连接(单词可以重复使用),求有多少种方法? #include<iostream> #include<cstdio> #includ ...

  9. bzoj 1196 公路修建问题

    bzoj 1196: [HNOI2006]公路修建问题 Description OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多.然而,由于该岛屿刚刚开发不久,所以那里的交通情 ...

  10. LOJ#2303. 「NOI2017」蚯蚓排队

    $n \leq 200000$的$1 \leq a_i \leq 6$的蚯蚓,有三种操作:让一只队头蚯蚓接在一只队尾蚯蚓后面:让一队蚯蚓从某个蚯蚓后面断成两队:问:给个字符串,问他的..算了你们直接看 ...