SPFA算法——最短路径
粗略讲讲SPFA算法的原理,SPFA算法是1994年西南交通大学段凡丁提出
是一种求单源最短路的算法
算法中需要用到的主要变量
int n; //表示n个点,从1到n标号
int s,t; //s为源点,t为终点
int d[N]; //d[i]表示源点s到点i的最短路
int p[N]; //记录路径(或者说记录前驱)
queue <int> q; //一个队列,用STL实现,当然可有手打队列,无所谓
bool vis[N]; //vis[i]=1表示点i在队列中 vis[i]=0表示不在队列中
几乎所有的最短路算法其步骤都可以分为两步
1.初始化
2.松弛操作
初始化: d数组全部赋值为INF(无穷大);p数组全部赋值为s(即源点),或者赋值为-1,表示还没有知道前驱
然后d[s]=0; 表示源点不用求最短路径,或者说最短路就是0。将源点入队;
(另外记住在整个算法中有顶点入队了要记得标记vis数组,有顶点出队了记得消除那个标记)
队列+松弛操作
读取队头顶点u,并将队头顶点u出队(记得消除标记);将与点u相连的所有点v进行松弛操作,如果能更新估计值(即令d[v]变小),那么就更新,另外,如果点v没有在队列中,那么要将点v入队(记得标记),如果已经在队列中了,那么就不用入队
以此循环,直到队空为止就完成了单源最短路的求解
SPFA可以处理负权边
定理: 只要最短路径存在,上述SPFA算法必定能求出最小值。
证明:
每次将点放入队尾,都是经过松弛操作达到的。换言之,每次的优化将会有某个点v的最短路径估计值d[v]变小。所以算法的执行会使d越来越小。由于我们假定图中不存在负权回路,所以每个结点都有最短路径值。因此,算法不会无限执行下去,随着d值的逐渐变小,直到到达最短路径值时,算法结束,这时的最短路径估计值就是对应结点的最短路径值。(证毕)
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
SPFA的两种写法,bfs和dfs,bfs判别负环不稳定,相当于限深度搜索,但是设置得好的话还是没问题的,dfs的话判断负环很快
int spfa_bfs(int s)
{
queue <int> q;
memset(d,0x3f,sizeof(d));
d[s]=;
memset(c,,sizeof(c));
memset(vis,,sizeof(vis)); q.push(s); vis[s]=; c[s]=;
//顶点入队vis要做标记,另外要统计顶点的入队次数
int OK=;
while(!q.empty())
{
int x;
x=q.front(); q.pop(); vis[x]=;
//队头元素出队,并且消除标记
for(int k=f[x]; k!=; k=nnext[k]) //遍历顶点x的邻接表
{
int y=v[k];
if( d[x]+w[k] < d[y])
{
d[y]=d[x]+w[k]; //松弛
if(!vis[y]) //顶点y不在队内
{
vis[y]=; //标记
c[y]++; //统计次数
q.push(y); //入队
if(c[y]>NN) //超过入队次数上限,说明有负环
return OK=;
}
}
}
} return OK; }
int spfa_dfs(int u)
{
vis[u]=;
for(int k=f[u]; k!=; k=e[k].next)
{
int v=e[k].v,w=e[k].w;
if( d[u]+w < d[v] )
{
d[v]=d[u]+w;
if(!vis[v])
{
if(spfa_dfs(v))
return ;
}
else
return ;
}
}
vis[u]=;
return ;
}
SPFA算法——最短路径的更多相关文章
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- Bellman-Ford & SPFA 算法——求解单源点最短路径问题
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...
- 最短路径算法之四——SPFA算法
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...
- 最短路径——SPFA算法
一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都 ...
- 数据结构与算法--最短路径之Bellman算法、SPFA算法
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...
- 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)
这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...
- 图论-最短路径--3、SPFA算法O(kE)
SPFA算法O(kE) 主要思想是: 初始时将起点加入队列.每次从队列中取出一个元素,并对所有与它相邻的点进行修改,若某个相邻的点修改成功,则将其入队.直到队列为空时算法结束. 这个算 ...
- 最短路径:我的理解--SPFA算法
SPFA算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm. 最短路径快速算法-SPFA算法是西南交通大学段凡丁于1994年发表的. 适用范围:给定 ...
随机推荐
- HibernateTemplate方法的使用
1.查询帖子(Post)为例 查找所有的帖子 public List<Post> findPosts() { String hql = "from Post p left joi ...
- protect,internal的区别
protected: 爷爷有一张银行卡,爸爸可以用,儿子也可以用,隔壁老王不可以用(因为老王跟爷爷没有继承关系) internal: 王总有一张银行卡,秘书可以用,经理可以用,王总儿子不可以用(因为银 ...
- MySql 三大知识点——索引、锁、事务(转)
1. 索引 索引,类似书籍的目录,可以根据目录的某个页码立即找到对应的内容. 索引的优点:1. 天生排序.2. 快速查找.索引的缺点:1. 占用空间.2. 降低更新表的速度. 注意点:小表使用全表扫描 ...
- js实现随机选取[10,100)中的10个整数,存入一个数组,并排序。 另考虑(10,100]和[10,100]两种情况。
1.js实现随机选取[10,100)中的10个整数,存入一个数组,并排序. <!DOCTYPE html> <html lang="en"> <hea ...
- 基础学习笔记之opencv(6):实现将图片生成视频
基础学习笔记之opencv(6):实现将图片生成视频 在做实验的过程中.难免会读视频中的图片用来处理,相反将处理好的图片又整理输出为一个视频文件也是非经常常使用的. 以下就来讲讲基于opencv的C+ ...
- 一起来学linux:sudo
通常在转换用户的时候会用到su 用户的方式.但是su方式需要知道切换的用户密码.而且su root到roo账户后,root账户有全部的权限.为了防止root账户干错事,因此有了sudo的命令.sudo ...
- Other Linker flags 添加 -Objc导致包冲突
Other Linker flags 添加 -Objc导致包冲突 先尝试不添加-Objc,不行的话尝试下面的方法. 第三方冲突解决办法: https://www.jianshu.com/p/02846 ...
- Java多线程系列 基础篇02 线程的创建和运行
1.线程创建的方式常用有两种 1. 继承 Thread 类创建线程 2. 实现 Runnable 接口创建线程 2.Thread 和 Runnable的区别 Thread和Runnable的相同点:都 ...
- mini2440 u-boot禁止蜂鸣器
mini2440的u-boot版本启动之后马上就会开启蜂鸣器,在办公环境下有可能会影响同事的工作,所以我考虑将其禁止掉. 我使用的mini2440使用的光盘是2013年10月的版本,我在该光盘下的u- ...
- 在IIS中某一个网站启用net.tcp
绑定 高级设置 http和net.tcp用逗号分隔 //擦擦擦,见鬼了,下面的是tcp.net导致我找了好久,都找不出这个错误 //一定要注意,不要写错了. 否则会收到提示:找不到具有绑定 NetT ...