Leetcode 435.无重叠区间
无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
- 可以认为区间的终点总是大于它的起点。
- 区间 [1,2] 和 [2,3] 的边界相互"接触",但没有相互重叠。
示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
【题目分析】
这个题目与《算法导论》中活动安排的题目非常类似。
活动选择问题
有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。
考虑使用贪心算法的解法。为了方便,我们用不同颜色的线条代表每个活动,线条的长度就是活动所占据的时间段,蓝色的线条表示我们已经选择的活动;红色的线条表示我们没有选择的活动。
如果我们每次都选择开始时间最早的活动,不能得到最优解:
如果我们每次都选择持续时间最短的活动,不能得到最优解:
可以用数学归纳法证明,我们的贪心策略应该是每次选取结束时间最早的活动。直观上也很好理解,按这种方法选择相容活动为未安排活动留下尽可能多的时间。这也是把各项活动按照结束时间单调递增排序的原因。
【思路】
参照上面活动安排的例子,我们很容易得到这个题目的解法。这是一个贪心问题,我们每次都找到那个结束点最小的区间,然后依次向后找那些与前面区间不冲突且结束点早的区间。这个过程中我们把局部的最优解合并成了全局的最优解。
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public int eraseOverlapIntervals(Interval[] intervals) {
if(intervals.length == 0) return 0; Comparator<Interval> comp = new Comparator<Interval>() {
public int compare(Interval interval1, Interval interval2) {
if(interval1.end > interval2.end) return 1;
else if(interval1.end < interval2.end) return -1;
else return 0;
}
}; Arrays.sort(intervals, comp);
int lastend = intervals[0].end;
int remove = 0;
for(int i = 1; i < intervals.length; i++) {
if(intervals[i].end == lastend) remove++;
else if(intervals[i].start < lastend) remove++;
else lastend = intervals[i].end;
} return remove;
}
}
Leetcode 435.无重叠区间的更多相关文章
- Java实现 LeetCode 435 无重叠区间
435. 无重叠区间 给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠. 注意: 可以认为区间的终点总是大于它的起点. 区间 [1,2] 和 [2,3] 的边界相互"接触& ...
- 力扣leetcode 435. 无重叠区间 - 贪心
非常经典的区间贪心思想 -- 详见博文: 贪心思想之区间贪心 本题给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠. 注意: 可以认为区间的终点总是大于它的起点. 区间 [1,2] ...
- 435 Non-overlapping Intervals 无重叠区间
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠.注意: 可以认为区间的终点总是大于它的起点. 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠.示例 ...
- [Swift]LeetCode435. 无重叠区间 | Non-overlapping Intervals
Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...
- 【LeetCode】435-无重叠区间
题目描述 给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠. 注意: 可以认为区间的终点总是大于它的起点. 区间 [1,2] 和 [2,3] 的边界相互"接触", ...
- [LeetCode] 435. Non-overlapping Intervals 非重叠区间
Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...
- [LeetCode] Non-overlapping Intervals 非重叠区间
Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...
- Java实现 LeetCode 689 三个无重叠子数组的最大和(换方向筛选)
689. 三个无重叠子数组的最大和 给定数组 nums 由正整数组成,找到三个互不重叠的子数组的最大和. 每个子数组的长度为k,我们要使这3*k个项的和最大化. 返回每个区间起始索引的列表(索引从 0 ...
- [LeetCode] Merge Intervals 合并区间
Given a collection of intervals, merge all overlapping intervals. For example, Given [1,3],[2,6],[8, ...
随机推荐
- (五)我的JavaScript系列:JavaScript的糟粕
泪眼问花花不语,乱红飞过秋千去. JavaScript的糟粕 JavaScript语言是一门集精华与糟粕于一体的语言.在JavaScript: the good parts中,便集中讨论了关于精华与糟 ...
- Outlook Web App 客户端超时设置
这篇文章我们讨论一下,OWA 2013在公共和私人的电脑是如何启用和配置. Exchange 2013 Outlook Web App (OWA) 登录页不再允许用户选择无论他们正在使用公共的或私人的 ...
- 有一个无效 SelectedValue,因为它不在项目列表中
“Drp_XX”有一个无效 SelectedValue,因为它不在项目列表中 出现以上异常的原因肯定是将DrowDownList控件的SelectedValue属性赋值为一个列表中不存在的值.那么我们 ...
- C基础练习题
1.下面有关C程序操作过程的说法中,错误的是______. A.C源程序经过编译,得到的目标文件即为可执行文件 B.C源程序的链接实质上是将目标代码文件和库函数等代码进行连接的过程 C.C源程序不能通 ...
- Python-OpenCV——亮度和对比度
亮度与对比度 亮度调整是将图像像素的强度整体变大/变小,对比度调整指的是图像暗处变得更暗,亮出变得更亮,从而拓宽某个区域内的显示精度. OpenCV中亮度和对比度应用这个公式来计算:g(x) = αf ...
- ReactiveCocoa概念解释进阶篇
1.ReactiveCocoa常见操作方法介绍 1.1 ReactiveCocoa操作须知 所有的信号(RACSignal)都可以进行操作处理,因为所有操作方法都定义在RACStream.h中,因此只 ...
- B1002 写出这个数
读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值.这里保证 n 小于 1. 输出格式: 在一行内输出 n 的 ...
- JS - encodeURI与encodeURIComponent的区别
encodeURI(String)主要用于整个URI(例如,http://www.jxbh.cn/illegal value.htm),而encodeURIComponent(String)主要用于对 ...
- 转载:将画布(canvas)图像保存成本地图片的方法
之前我曾介绍过如何将HTML5画布(canvas)内容转变成图片形式,方法十分简单.但后来我发现只将canvas内容转变成图片输出还不够,如何能将转变后的图片保存到本地呢? 其实,这个方法也是非常简单 ...
- python 列表加法"+"和"extend"的区别
相同点 : "+"和"extend"都能将两个列表成员拼接到到一起 不同点 : + : 生成的是一个新列表(id改变) extend : 是将一个列表的成员 ...