无重叠区间

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意:

  1. 可以认为区间的终点总是大于它的起点。
  2. 区间 [1,2] 和 [2,3] 的边界相互"接触",但没有相互重叠。

示例 1:

输入: [ [1,2], [2,3], [3,4], [1,3] ]

输出: 1

解释: 移除 [1,3] 后,剩下的区间没有重叠。

示例 2:

输入: [ [1,2], [1,2], [1,2] ]

输出: 2

解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。

示例 3:

输入: [ [1,2], [2,3] ]

输出: 0

解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

【题目分析】

这个题目与《算法导论》中活动安排的题目非常类似。

活动选择问题
有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

考虑使用贪心算法的解法。为了方便,我们用不同颜色的线条代表每个活动,线条的长度就是活动所占据的时间段,蓝色的线条表示我们已经选择的活动;红色的线条表示我们没有选择的活动。
如果我们每次都选择开始时间最早的活动,不能得到最优解:

如果我们每次都选择持续时间最短的活动,不能得到最优解:

可以用数学归纳法证明,我们的贪心策略应该是每次选取结束时间最早的活动。直观上也很好理解,按这种方法选择相容活动为未安排活动留下尽可能多的时间。这也是把各项活动按照结束时间单调递增排序的原因。

【思路】

参照上面活动安排的例子,我们很容易得到这个题目的解法。这是一个贪心问题,我们每次都找到那个结束点最小的区间,然后依次向后找那些与前面区间不冲突且结束点早的区间。这个过程中我们把局部的最优解合并成了全局的最优解。

 /**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public int eraseOverlapIntervals(Interval[] intervals) {
if(intervals.length == 0) return 0; Comparator<Interval> comp = new Comparator<Interval>() {
public int compare(Interval interval1, Interval interval2) {
if(interval1.end > interval2.end) return 1;
else if(interval1.end < interval2.end) return -1;
else return 0;
}
}; Arrays.sort(intervals, comp);
int lastend = intervals[0].end;
int remove = 0;
for(int i = 1; i < intervals.length; i++) {
if(intervals[i].end == lastend) remove++;
else if(intervals[i].start < lastend) remove++;
else lastend = intervals[i].end;
} return remove;
}
}

Leetcode 435.无重叠区间的更多相关文章

  1. Java实现 LeetCode 435 无重叠区间

    435. 无重叠区间 给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠. 注意: 可以认为区间的终点总是大于它的起点. 区间 [1,2] 和 [2,3] 的边界相互"接触& ...

  2. 力扣leetcode 435. 无重叠区间 - 贪心

    非常经典的区间贪心思想 -- 详见博文: 贪心思想之区间贪心 本题给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠. 注意: 可以认为区间的终点总是大于它的起点. 区间 [1,2] ...

  3. 435 Non-overlapping Intervals 无重叠区间

    给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠.注意:    可以认为区间的终点总是大于它的起点.    区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠.示例 ...

  4. [Swift]LeetCode435. 无重叠区间 | Non-overlapping Intervals

    Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...

  5. 【LeetCode】435-无重叠区间

    题目描述 给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠. 注意: 可以认为区间的终点总是大于它的起点. 区间 [1,2] 和 [2,3] 的边界相互"接触", ...

  6. [LeetCode] 435. Non-overlapping Intervals 非重叠区间

    Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...

  7. [LeetCode] Non-overlapping Intervals 非重叠区间

    Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...

  8. Java实现 LeetCode 689 三个无重叠子数组的最大和(换方向筛选)

    689. 三个无重叠子数组的最大和 给定数组 nums 由正整数组成,找到三个互不重叠的子数组的最大和. 每个子数组的长度为k,我们要使这3*k个项的和最大化. 返回每个区间起始索引的列表(索引从 0 ...

  9. [LeetCode] Merge Intervals 合并区间

    Given a collection of intervals, merge all overlapping intervals. For example, Given [1,3],[2,6],[8, ...

随机推荐

  1. Android Error:Could not run build action using Gradle installation

    错误内容: Error:Could not run build action using Gradle installation ‘D:\AndroidStudio\AS2.x\gradle\grad ...

  2. Linux 安装Memcache扩展支持

    查看相关软件包 yum search memcached 安装memcache yum -y install memcachedMemcache关联php yum -y install php-pec ...

  3. java入门第二章——java编程基础

    习题 一.填空题 (p)1.java中的程序代码都必须在一个类中定义,类使用(class)关键字来定义. (p)2.布尔常量即布尔类型的两个值,分别是(true)和(false) (p18)3.jav ...

  4. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  5. 关于一些Spring MVC控制器的参数注解总结

    昨天同事问我控制器参数的注解的问题,我好久没那样写过,把参数和url一起设置,不过,今天我看了一些文章,查了一些资料,我尽可能的用我自己的理解方式来解释它吧! 1.@RequestParam绑定单个请 ...

  6. .net代码获取节点以及读取属性

    获取配置文件的节点,可以使用System.Configuration.ConfigurationManager.GetSection方法获取指定的节点,以sessionstate节点为例,如果需要获取 ...

  7. CF Gym 100637A Nano alarm-clocks

    题意:给你一些钟的时间,只可以往后调, 问最少调的时间总和是多少 题解:因为肯定是调到某个出现过时间的,只要枚举时间,在维护一个前缀和快速计算出时间总和就行了. #include<cstdio& ...

  8. python_94_类变量实例变量

    class Role: n=123#类变量 name='我是类name' list=[] def __init__(self,name,role,weapon,life_value=100,money ...

  9. java基础—代理(proxy)

    一.代理的概念 动态代理技术是整个java技术中最重要的一个技术,它是学习java框架的基础,不会动态代理技术,那么在学习Spring这些框架时是学不明白的. 动态代理技术就是用来产生一个对象的代理对 ...

  10. 关于flyme5显示不到和卸载不到旧应用解决方法

    笔者买入一台mx5,升级flyme5后旧应用没有显示出来,而且在设置的应用管理都没显示旧应用. 通过adb命令: adb shell pm list packages显示所有包名, 查看自己要删除应用 ...