知识复习(LDT+TSS+GATE+INTERRUPT)
【1】README
- 1.0)由于实现进程的切换任务,其功能涉及到 LDT + TSS +GATE + INTERRUPT;下面我们对这些内容进行复习;
- 1.1) source code from orange’s implemention of a os .
##**【2】知识复习(LDT+TSS+GATE +** INTERRUPT)
**2.1)LDT的复习**
- (1)在GDT中定义 LDT 描述符;
- (2)然后在实模式下,初始化 GDT中的LDT描述符;
- (3)还要初始化 LDT中的段描述符(用局部任务代码去初始化 LDT 中 段描述符的基地址);
- (4)加载GDT到GDTR;
- (5)切换到保护模式;
- (6)做完任务后,跳转到局部任务(jmp SelectorLDTCodeA:0),SelectorLDTCodeA作为LDT的选择子,用于索引LDT中段描述符,其初始化在实模式下完成;
- (7)紧接着就跳转到该选择子对应的任务代码段去执行;
2.2)对于GDT和LDT的结构,我们再做个总结
LABEL_GDT:
LABEL_DESC_LDT : Descriptor 0, LDTLen - 1, DA_LDT ; LDT
SelectorLDT equ LABEL_DESC_LDT- LABEL_GDT
LABEL_LDT :
LABEL_LDT_DESC_CODEA : Descriptor 0, CodeALen - 1, DA_C + DA_32 ; Code, 32 位
SelectorLDTCodeA equ LABEL_LDT_DESC_CODEA - LABEL_LDT: + SA_TIL
; 初始化 LDT 在 GDT 中的描述符
xor eax, eax
mov ax, ds
shl eax, 4
add eax, LABEL_LDT
mov word [LABEL_DESC_LDT + 2], ax
shr eax, 16
mov byte [LABEL_DESC_LDT + 4], al
mov byte [LABEL_DESC_LDT + 7], ah
; 初始化 LDT 中的描述符
xor eax, eax
mov ax, ds
shl eax, 4
add eax, LABEL_CODE_A
mov word [LABEL_LDT_DESC_CODEA+ 2], ax
shr eax, 16
mov byte [LABEL_LDT_DESC_CODEA+ 4], al
mov byte [LABEL_LDT_DESC_CODEA+ 7], ah
; Load LDT
mov ax, SelectorLDT
lldt ax
jmp SelectorLDTCodeA :0 ; 跳入局部任务
; CodeA (LDT, 32 位代码段)
[SECTION .la]
ALIGN 32
[BITS 32]
LABEL_CODE_A :
mov ax, SelectorVideo
mov gs, ax ; 视频段选择子(目的)
mov edi, (80 * 12 + 0) * 2 ; 屏幕第 10 行, 第 0 列。
mov ah, 0Ch ; 0000: 黑底 1100: 红字
mov al, 'L'
mov [gs:edi],
(Attention)显然,我们发现,加载到 ldt 寄存器 的 选择子是 GDT中 LDT段描述符 的选择子, 而调用局部描述符对应的目标代码时,我们用的是 LDT 中的该代码对应的选择子;(干货)
**2.2)TSS的复习**
- 由于每个任务可能在4个特权级间转移,故每个任务实际上需要4个堆栈;
- 问题是:我们只有一个ss 和 esp, 那么当发生堆栈切换,我们该从哪里获取其他堆栈的ss 和 esp 呢?
我们引入TSS, 它可以解决这个问题。 - 我们再总结一下就是:不同特权级的代码段间的转移(更具体点,是从低特权级->高特权级),会发生堆栈切换,使得调用者的入栈的堆栈是针对调用者本身的堆栈, 而出栈操作是针对被调用者的堆栈,即入栈和出栈的堆栈不一致,使得特权级间跳转出错,故引入了 TSS;
(Conclusion)我们再理一理 TSS 和 GDT 的结构关系
; 任务状态段描述符 LABEL_DESC_TSS + 选择子
LABEL_GDT:
...........
LABEL_DESC_TSS : Descriptor 0, TSSLen-1, DA_386TSS ; ( DA_386TSS == 89h )
SelectorTSS equ LABEL_DESC_TSS - LABEL_GDT
; TSS [add] (任务状态段的定义)
[SECTION .tss]
ALIGN 32
[BITS 32]
LABEL_TSS :
DD 0 ; Back
DD TopOfStack ; 0 级堆栈
DD SelectorStack ;
DD 0 ; 1 级堆栈
DD 0 ;
DD 0 ; 2 级堆栈
DD 0 ;
DD 0 ; CR3
DD 0 ; EIP
DD 0 ; EFLAGS
DD 0 ; EAX
DD 0 ; ECX
DD 0 ; EDX
DD 0 ; EBX
DD 0 ; ESP
DD 0 ; EBP
DD 0 ; ESI
DD 0 ; EDI
DD 0 ; ES
DD 0 ; CS
DD 0 ; SS
DD 0 ; DS
DD 0 ; FS
DD 0 ; GS
DD 0 ; LDT
DW 0 ; 调试陷阱标志
DW $ - LABEL_TSS+ 2 ; I/O位图基址
DB 0ffh ; I/O位图结束标志
TSSLen equ $ - LABEL_TSS
; 初始化 TSS 描述符,实模式
xor eax, eax
mov ax, ds
shl eax, 4
add eax, LABEL_TSS
mov word [LABEL_DESC_TSS+ 2], ax
shr eax, 16
mov byte [LABEL_DESC_TSS+ 4], al
mov byte [LABEL_DESC_TSS+ 7], ah
; Load TSS, 在保护模式中,从ring3->ring0之前
; 因为是先通过retf实现 ring0->ring3,然后通过门实现ring3->ring0(门目标段的特权级为0),ring3->ring0会发生堆栈切换,所以在这之前需要加载TSS进入 tr-任务寄存器
mov ax, SelectorTSS
ltr ax ; 在任务内发生特权级变换时要切换堆栈,而内层堆栈的指针存放在当前任务的TSS中,所以要设置任务状态段寄存器 TR。
push SelectorStack3
push TopOfStack3
push SelectorCodeRing3 ; 打印 '3'
push 0
retf
(Attention) 从以上代码,初始化TSS的内存空间,创建 GDT中的 TSS 描述符 以及 在实模式下初始化TSS 的描述符, 最后跳转到 保护模式,在特权级切换之前,我们把 TSS段描述符在GDT 中的选择子加载到了 tr-任务寄存器中,这样方便 不同特权级代码间的切换 进行堆栈切换;
**2.3)GATE的复习**
(1)在GDT中定义门描述符+门选择子 + 该门对应的代码段描述符及其选择子,从以下 门和门对应的代码段描述符 的定义可以看到,门描述符存储着该代码段描述符的选择子以建立它们间的联系;
LABEL_DESC_CODE_DEST: Descriptor 0,SegCodeDestLen-1, DA_C+DA_32; 非一致代码段,32
SelectorCodeDest equ LABEL_DESC_CODE_DEST- LABEL_GDT
; 门 目标选择子,偏移,DCount, 属性
LABEL_CALL_GATE_TEST : Gate SelectorCodeDest, 0, 0, DA_386CGate+DA_DPL0
SelectorCallGateTest equ LABEL_CALL_GATE_TEST - LABEL_GDT(2)在实模式中初始化测试调用门的代码段描述符;(门对应的代码段,我们称其为调用门目标段)
; 初始化测试调用门的代码段描述符
xor eax, eax
mov ax, cs
shl eax, 4
add eax, LABEL_SEG_CODE_DEST ; (调用门目标段基地址)
mov word [LABEL_DESC_CODE_DEST + 2], ax
shr eax, 16
mov byte [LABEL_DESC_CODE_DEST + 4], al
mov byte [LABEL_DESC_CODE_DEST + 7], ah
(3)加载GDT到GDTR,并进入保护模式;
(4)做完任务后,测试调用门(call SelectorCallGateTest:0),注意,它这里的调用地址用的是 调用门选择子,通过调用门选择子->调用门描述符->门目标段选择子->门目标段描述符->门目标段基地址,即通过调用门选择子寻址到门目标段基地址去运行;
; 测试调用门(无特权级变换),将打印字母 'C'
call SelectorCallGateTest:0
**2.4)中断复习**
step0)构建中断处理程序函数(在32位代码段的保护模式中):
_UserIntHandler:
UserIntHandler equ _UserIntHandler - $$
mov ah, 0Ch ; 0000: 黑底 1100: 红字
mov al, 'I'
mov [gs:((80 * 0 + 70) * 2)], ax ; 屏幕第 0 行, 第 70 列。
iretd _SpuriousHandler:
SpuriousHandler equ _SpuriousHandler - $$
mov ah, 0Ch ; 0000: 黑底 1100: 红字
mov al, '!'
mov [gs:((80 * 0 + 75) * 2)], ax ; 屏幕第 0 行, 第 75 列。
jmp $
iretd
step1)构建IDT,IDT表项也就是门(中断门+陷阱门),主要是为中断向量号(依据表项索引)绑定中断处理程序,(为演示方便,特别为向量号 80h 绑定了中断处理程序),要知道,中断向量号 把中断异常的处理程序 与 中断异常类型联系了起来;
[SECTION .idt]
ALIGN 32
[BITS 32]
LABEL_IDT:
; 门 目标选择子, 偏移, DCount, 属性
%rep 128
Gate SelectorCode32, SpuriousHandler, 0, DA_386IGate
%endrep
.080h: Gate SelectorCode32, UserIntHandler, 0, DA_386IGate
IdtLen equ $ - LABEL_IDT
IdtPtr dw IdtLen - 1 ; 段界限
dd 0 ; 基地址
step2)实模式下,为加载IDTR做准备, 并将IDT(基地址+段界限)加载到 IDTR;
; 为加载 IDTR 作准备
xor eax, eax
mov ax, ds
shl eax, 4
add eax, LABEL_IDT ; eax <- idt 基地址
mov dword [IdtPtr + 2], eax ; [IdtPtr + 2] <- idt 基地址
; 加载 GDTR
lgdt [GdtPtr]
; 关中断
cli
; 加载 IDTR
lidt [IdtPtr]
step4)向主8259A写入OCW1,以开启定时器中断, 然后向从8259A写入OCW1 以屏蔽从8259A所有中断;
; start Init8259A
Init8259A:
mov al, 011h
out 020h, al ; 主8259, ICW1.
call io_delay out 0A0h, al ; 从8259, ICW1.
call io_delay mov al, 020h ; IRQ0 对应中断向量 0x20
out 021h, al ; 主8259, ICW2.
call io_delay mov al, 028h ; IRQ8 对应中断向量 0x28
out 0A1h, al ; 从8259, ICW2.
call io_delay mov al, 004h ; IR2 对应从8259
out 021h, al ; 主8259, ICW3.
call io_delay mov al, 002h ; 对应主8259的 IR2
out 0A1h, al ; 从8259, ICW3.
call io_delay mov al, 001h
out 021h, al ; 主8259, ICW4.
call io_delay out 0A1h, al ; 从8259, ICW4.
call io_delay mov al, 11111110b ; 仅仅开启定时器中断
;mov al, 11111111b ; 屏蔽主8259所有中断
out 021h, al ; 主8259, OCW1.
call io_delay mov al, 11111111b ; 屏蔽从8259所有中断
out 0A1h, al ; 从8259, OCW1.
call io_delay ret
; over Init8259A
step5)触发中断 int 080h;
知识复习(LDT+TSS+GATE+INTERRUPT)的更多相关文章
- 前端知识复习: JS选中变色
前端知识复习:JS选中变色 上篇文章 :前端知识复习:Html DIV 图文混排(文字放在图片下边) Js选中图片效果 <!DOCTYPE html> <html xmlns=&qu ...
- 前端知识复习:Html DIV 图文混排(文字放在图片下边)
Html知识复习之图文混排 练习练习基础 先上效果图: 废话不多说,直接贴代码: <!DOCTYPE html> <html xmlns="http://www.w3.or ...
- PE知识复习之PE的绑定导入表
PE知识复习之PE的绑定导入表 一丶简介 根据前几讲,我们已经熟悉了导入表结构.但是如果大家尝试过打印导入表的结构. INT IAT的时候. 会出现问题. PE在加载前 INT IAT表都指向一个名称 ...
- PE知识复习之PE的重定位表
PE知识复习之PE的重定位表 一丶何为重定位 重定位的意思就是修正偏移的意思. 如一个地址位 0x401234 ,Imagebase = 0x400000 . 那么RVA就是 1234. 如果Im ...
- PE知识复习之PE的导入表
PE知识复习之PE的导入表 一丶简介 上一讲讲解了导出表. 也就是一个PE文件给别人使用的时候.导出的函数 函数的地址 函数名称 序号 等等. 一个进程是一组PE文件构成的. PE文件需要依赖那些 ...
- PE知识复习之PE的导出表
PE知识复习之PE的导出表 一丶简介 在说明PE导出表之前.我们要理解.一个PE可执行程序.是由一个文件组成的吗. 答案: 不是.是由很多PE文件组成.DLL也是PE文件.如果我们PE文件运行.那么就 ...
- PE知识复习之PE合并节
PE知识复习之PE合并节 一丶简介 根据上一讲.我们为PE新增了一个节. 并且属性了各个成员中的相互配合. 例如文件头记录节个数.我们新增节就要修改这个个数. 那么现在我们要合并一个节.以上一讲我们例 ...
- PE知识复习之PE新增节
PE知识复习之PE新增节 一丶为什么新增节.以及新增节的步骤 例如前几讲.我们的PE文件在空白区可以添加代码.但是这样是由一个弊端的.因为你的空白区节属性可能是只读的不能执行.如果你修改了属性.那么程 ...
- PE知识复习之PE扩大节
PE知识复习之PE扩大节 一丶为什么扩大节 上面我们讲了,空白区添加我们的代码.但是有的时候.我们的空白区不够了怎么办.所以需要进行扩大节. 扩大节其实很简单.修改节数据对齐后的大小即可. 并且在PE ...
随机推荐
- linux下的程序调试方法汇总
搞电子都知道,电路不是焊接出来的,是调试出来的.程序员也一定认同,程序不是写出来的,是调试出来的.那么调试工具就显得尤为重要,linux作为笔者重要的开发平台,在linux中讨论调试工具主要是为那些入 ...
- AI创投的冰与火之歌:泡沫、跟风、短板和有钱花不出去的沮丧【转】
转自:http://36kr.com/p/5071386.html 国内的AI行业仍处于野蛮生长阶段.热钱不少,优质项目却不多.创业者拿钱难,投资者有钱却花不出去. 编者按:本文来自微信公众号“刺猬公 ...
- Python 多核 多线程 调度
参考: http://www.oschina.net/translate/pythons-hardest-problem https://news.ycombinator.com/item?id=58 ...
- LeetCode OJ-- Container With Most Water
https://oj.leetcode.com/problems/container-with-most-water/ 不同高度的柱子排一列,两个柱子可以组成一个容器,求最大容积. 最直观的方法就是暴 ...
- Cryptography I 学习笔记 --- 认证加密
1. 认证加密,Alice与Bob共享一个密钥k,Alice可以发送密文E给Bob,Bob可以确定接收到的E一定是拥有密钥k的Alice产生的.而不是攻击者随便产生的. 2. 认证加密必须能抵挡住选择 ...
- fs寄存器相关,PEB,TEB
---恢复内容开始--- FS寄存器指向:偏移 说明000 指向SEH链指针004 线程堆栈顶部008 线程堆栈底部00C SubSystemTib010 FiberData014 Arbitrary ...
- Maven错误:“No goals have been specified for this build...”问题解决
如图出现如下错误: 解决方法如下: 1.(未测试)在pom.xml添加如下配置: <build> <defaultGoal>compile</defaultGoal> ...
- HDU1421
提交啦n次一直WA,这个bug找啦几个小时,最终才发现数组开小啦,真是遗憾.这是一个典型的DP问题,题目要求从n个中选出k对使得最终疲劳度最小.首先对物品质量a[n]进行一次排序,用dp[i][j]表 ...
- 关于Web应用和容器的指纹收集以及自动化软件的制作
一次对Web应用的渗透,九成都是从信息收集开始,所以信息收集就显得尤为重要.关键信息的收集可以使你在后期渗透的时候更加的得心应手,把渗透比喻成走黑暗迷宫的话,那信息收集可以帮你点亮迷宫的大部分地图. ...
- kali渗透测试基础
一侦查 研究如何收集有关目标的情报,比如开发那些端口用来通信,托管在哪里,提供给客户的服务类型等. 交付内容应该包括需要攻击的所有目标资产清单,与那些资产关联的应用,使用的服务以及可能的资产所有者. ...