UVA10779Collectors Problem
uva 10779 Collectors Problem
Some candy manufacturers put stickers into candy bar packages. Bob and his friends are collecting
these stickers. They all want as many different stickers as possible, but when they buy a candy bar,
they don’t know which sticker is inside.
It happens that one person has duplicates of a certain sticker. Everyone trades duplicates for stickers
he doesn’t possess. Since all stickers have the same value, the exchange ratio is always 1:1.
But Bob is clever: he has realized that in some cases it is good for him to trade one of his duplicate
stickers for a sticker he already possesses.
Now assume, Bob’s friends will only exchange stickers with Bob, and they will give away only
duplicate stickers in exchange with different stickers they don’t possess.
Can you help Bob and tell him the maximum number of different stickers he can get by trading
stickers with his friends?
Input
The first line of input contains the number of cases T (T ≤ 20). The first line of each case contains
two integers n and m (2 ≤ n ≤ 10, 5 ≤ m ≤ 25). n is the number of people involved (including Bob),
and m is the number of different stickers available.
The next n lines describe each person’s stickers; the first of these lines describes Bob’s stickers.
The i-th of these lines starts with a number ki ≤ 50 indicating how many stickers person i has.
Then follows ki numbers between 1 and m indicating which stickers person i possesses.
Output
For each case, print the test case number together with the maximum number of different stickers Bob
can get.
Explanation of the sample output:
In the first case, no exchange is possible, therefore Bob can have only the sticker with number 1.
In the second case, Bob can exchange a sticker with number 1 against a sticker with number 2 of
the second person, and then this sticker against a sticker with number 3 or 4 of the third person, and
now he has stickers 1, 2 and 3 or 1, 2 and 4.
Sample Input
2
2 5
6 1 1 1 1 1 1
3 1 2 2
3 5
4 1 2 1 1
3 2 2 2
5 1 3 4 4 3
Sample Output
Case #1: 1
Case #2: 3
题意
n个人,m种贴纸,每个人开始都有一些贴纸。
第一个人Bob可以跟任何人交换任何贴纸,其他人只能用重复的贴纸,和Bob交换他们没有的贴纸,Bob最后最多有多少种贴纸
分析
网络流。重点是建图。
Bob做源点好了,汇点新建一个。
Bob和所有贴纸有一条流量为 Bob拥有的贴纸数量的边,所有贴纸都与汇点建一条流量为1的边。
如果其他的人第i张贴纸有x张多余的,那么这个人向i连一条流量为x的边。
如果他第i张贴纸为0,那么i向这个人连一条流量为1的边。
code
include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream> using namespace std; const int INF = 1e9;
const int N = ; struct Edge{
int to,nxt,c;
}e[N];
int q[],head[N],cur[N],dis[N],cnt[][];
int L,R,S,T,tot = ; inline char nc() {
static char buf[],*p1 = buf,*p2 = buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
inline int read() {
int x = ,f = ;char ch = nc();
for (; ch<''||ch>''; ch = nc()) if (ch=='-') f = -;
for (; ch>=''&&ch<=''; ch = nc()) x = x * + ch - '';
return x * f;
}
inline void init() {
tot = ;memset(head,,sizeof(head));
memset(cnt,,sizeof(cnt));
}
inline void add_edge(int u,int v,int w) {
e[++tot].to = v,e[tot].c = w,e[tot].nxt = head[u],head[u] = tot;
e[++tot].to = u,e[tot].c = ,e[tot].nxt = head[v],head[v] = tot;
}
bool bfs() {
for (int i=; i<=T; ++i) {
cur[i] = head[i];dis[i] = -;
}
L = ;R = ;
q[++R] = S;
dis[S] = ;
while (L <= R) {
int u = q[L++];
for (int i=head[u]; i; i=e[i].nxt) {
int v = e[i].to,c = e[i].c;
if (dis[v]==-&&c>) {
dis[v] = dis[u] + ;
q[++R] = v;
if (v==T) return true;
}
}
}
return false;
}
int dfs(int u,int flow) {
if (u==T) return flow;
int used = ;
for (int &i=cur[u]; i; i=e[i].nxt) {
int v = e[i].to,c = e[i].c;
if (dis[v]==dis[u]+ && c>) {
int tmp = dfs(v,min(c,flow-used));
if (tmp > ) {
e[i].c -= tmp;e[i^].c += tmp;
used += tmp;
if (used==flow) break;
}
}
}
if (used!=flow) dis[u] = -;
return used;
}
inline int dinic() {
int ans = ;
while (bfs()) ans += dfs(S,INF);
return ans;
}
int main() {
int sum_case = read();
for (int Case=; Case<=sum_case; Case++) {
init();
int n = read(),m = read();
S = ;T = n + m + ;
for (int i=; i<=m; ++i) add_edge(i+n,T,);
for (int i=; i<=n; ++i) {
int k = read();
for (int a,j=; j<=k; ++j) {
a = read();cnt[i][a]++;
}
}
for (int i=; i<=m; ++i)
if (cnt[][i]) add_edge(S,i+n,cnt[][i]);
for (int i=; i<=n; ++i) {
for (int j=; j<=m; ++j) {
if (cnt[i][j] > ) add_edge(i,j+n,cnt[i][j]-);
else if (cnt[i][j]==) add_edge(j+n,i,);
}
}
printf("Case #%d: %d\n",Case,dinic());
}
return ;
}
UVA10779Collectors Problem的更多相关文章
- 1199 Problem B: 大小关系
求有限集传递闭包的 Floyd Warshall 算法(矩阵实现) 其实就三重循环.zzuoj 1199 题 链接 http://acm.zzu.edu.cn:8000/problem.php?id= ...
- No-args constructor for class X does not exist. Register an InstanceCreator with Gson for this type to fix this problem.
Gson解析JSON字符串时出现了下面的错误: No-args constructor for class X does not exist. Register an InstanceCreator ...
- C - NP-Hard Problem(二分图判定-染色法)
C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144 ...
- Time Consume Problem
I joined the NodeJS online Course three weeks ago, but now I'm late about 2 weeks. I pay the codesch ...
- Programming Contest Problem Types
Programming Contest Problem Types Hal Burch conducted an analysis over spring break of 1999 and ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- [LeetCode] Water and Jug Problem 水罐问题
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- [LeetCode] The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
随机推荐
- uvm_reg_predictor——寄存器模型(十一)
保存寄存器的值 观察DUT寄存器值的变化. //---------------------------------------------------------------------------- ...
- uvm_reg_map——寄存器模型(八)
所有的寄存器都需要地址,都需要加入到地址列表中 //-------------------------------------------------------------------------- ...
- mysql数据库备份/恢复
备份数据库(进入Mysql bin目录下/C:\Program Files\MySQL\MySQL Server 5.6\bin)本地安装mysql数据库 备份表结构及数据 mysqldump -hl ...
- 为什么我的C4C Service Request没办法Release到ERP?
问题 UI上发现找不到Release to ERP的按钮: 但是在UI Designer里是能看到这个按钮的.检查其Visible的属性,绑到了一个Calculated Rule上面: 发现其显示在r ...
- 5分钟部署一个Hello World Servlet到CloudFoundry
首先从我的Github下载我写好的hello world Servlet到本地. 安装Maven,然后执行命令行mvn clean install,确保build成功,在项目根目录的target文件夹 ...
- cookie和session是否可以保存对象
session看了一下,是可以保存对象的.语法很普通,但是cookie的话本身是只能保存string类型的信息的,这就需要先序列化,然后接收的页面反序列化后形成对象调用,为了防止乱码,需要在数据传输的 ...
- 使用nginx搭建一个简单的负载均衡
在windows系统上使用IIS模拟出两个不同服务器的站点: 然后再NGINX使用轮询机制配置两个服务器以及虚拟服务器的端口: 需要注意的是,配置虚拟代理域名的话需要找到windowsC盘下的host ...
- [机器视觉] SIFT特征-尺度不变特征理解
SIFT特征-尺度不变特征理解 简介 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性 ...
- 使用Python-OpenCV向图片添加噪声(高斯噪声、椒盐噪声)
在matlab中,存在执行直接得函数来添加高斯噪声和椒盐噪声.Python-OpenCV中虽然不存在直接得函数,但是很容易使用相关的函数来实现. 代码: import numpy as np impo ...
- IE下contentWindow对象与FF、Chrome下的区别
在ie中frame(iframe)标签通过name和id获取的对象是不同的. 通过name获取的本身就是contentWindow对象.所以 在ie中不用再找contentWindow了 例: let ...