POJ2018 Best Cow Fences —— 斜率优化DP
题目链接:https://vjudge.net/problem/POJ-2018
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 11394 | Accepted: 3736 |
Description
FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.
Input
* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
Output
Sample Input
10 6
6
4
2
10
3
8
5
9
4
1
Sample Output
6500
Source
题意:
给出一个序列,求一段个数大于等于F的子序列,使得它的(和/个数)最大。
题解:
1.最暴力的做法是:先求出前缀和,再枚举序列的起点终点。时间复杂度为O(n^2),因此不能通过。
2.我们可以把前缀和sum[i]看作是坐标轴的y坐标,个数i看作是坐标轴的x坐标。这样就转化为求:(sum[i]-sum[j])/(i-j)最大,显然这是一个斜率的表达式,因而要求的是最大斜率。
3.根据第2点,我们可以用斜率进行优化:由于求的是最大斜率,因而备选点要维持下凸性。
4.关于每组的个数最少为F的处理,详情在:HDU3045 Picnic Cows
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 1e5+; double sum[MAXN], dp[MAXN];
int head, tail, q[MAXN]; double slope(int i, int j) //斜率
{
return (sum[j]-sum[i])/(j-i);
} int main()
{
int n, F;
while(scanf("%d%d",&n,&F)!=EOF)
{
sum[] = ;
for(int i = ; i<=n; i++)
{
int val;
scanf("%d", &val);
sum[i] = sum[i-] + val;
} double ans = ;
head = tail = ;
q[tail++] = ;
for(int i = F; i<=n; i++)
{
while(head+<tail && slope(q[head],i)<slope(q[head+], i)) head++;
ans = max(ans, slope(q[head],i)); int j = i-F+; //不能直接放i,因为要求了每一组至少为F,故i不能为i+1转移。
while(head+<tail && slope(q[tail-], j)<slope(q[tail-],q[tail-])) tail--;
q[tail++] = j;
} printf("%d\n", (int)(ans*));
}
}
POJ2018 Best Cow Fences —— 斜率优化DP的更多相关文章
- POJ-2018 Best Cow Fences(二分加DP)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10174 Accepted: 3294 Desc ...
- HDU 3045 Picnic Cows(斜率优化DP)
Picnic Cows Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- [USACO2003][poj2018]Best Cow Fences(数形结合+单调队列维护)
http://poj.org/problem?id=2018 此乃神题……详见04年集训队论文周源的,看了这个对斜率优化dp的理解也会好些. 分析: 我们要求的是{S[j]-s[i-1]}/{j-(i ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- BZOJ 3156: 防御准备 斜率优化DP
3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...
随机推荐
- AGC006
AtCoder Grand Contest 006 <br > 心血来潮,开了一套AGC..... 然后发现各种不会做.........感觉智商被AGC摁在地上摩擦...... <b ...
- 谈谈 ServletConfig 和 ServletContext
目录 一.ServletConfig 和 ServletContext 的概念 二.ServletConfig 和 SerlvetContext 代码表示 一.ServletConfig 和 Serv ...
- Java-线程池总结
线程池的优点: 重用线程,减少线程创建和销毁的性能开销. 管理线程,并提供定时执行以及指定间隔循环执行等功能. Android中的线程来源于Java中的Executor,实现类是ThreadPoolE ...
- Delphi Helper Record Class
unit Unit1; {$DEFINE USESGUIDHELP} interface implementation {$IFDEF USESGUIDHELP} uses System.SysUti ...
- 线性回归,logistic回归分类
学习过程 下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型.就如同上面的线性 ...
- 算法之美--3.2.3 KMP算法
不知道看了几遍的kmp,反正到现在都没有弄清楚next[j]的计算和kmp的代码实现,温故而知新,经常回来看看,相信慢慢的就回了 从头到尾彻底理解KMP 理解KMP /*! * \file KMP_算 ...
- hadoop常见错误
hadoop常见错误集锦: 1.DataXceiver error processing WRITE_BLOCK operation ERROR org.apache.hadoop.hdfs.serv ...
- Go Programming Blueprints 读书笔记(谈到了nsq/mgo处理数据持久化,可是业务逻辑不够复杂)
Go Programming Blueprints http.Handle("/", &templateHandler{filename: "chat.html& ...
- SASS入门之SASS安装
当然...凭借我这样的肤浅的智商,根本不能理解什么叫certificate verfiy fail... 所以找了一段时间的方法,最后最终在一个sass群里找到了... 发在这里纯属作为自己的一个学习 ...
- 关于position的小总结
position:relative/absolute/fixed/static ...... relative:相对定位. 脱离标准流,相对自己原来(标准流)的位置定位.absolute:绝对定位. ...