教你十分钟学会使用numpy。

简单介绍一下numpy的话,这就是一个基于多维数组的python科学计算的核心库。

基本信息

# 一般用np作为numpy的缩写
import numpy as np # 这里创建了一个数组 之后详细说明
arr = np.array([[[1], [2]], [[3], [4]]], dtype=np.int32) # 数组的维度
arr.ndim # 数组的各个维度的长度
arr.shape # 数组元素个数
arr.size

索引对象

这里要说一个贯穿数据索引的重要概念。无论是原生的python list容器,numpy,还是之后的pandas都会用到。

在原生的python list容器中我们一般会用list[start:end:step]做列表索引,那么我们用于索引的对象就是start:end:step即切片对象(slice)。

numpy扩展了可以用于索引的对象。我们可以用任意的序列对象作为索引。比如在numpy中array[1:4]array[[1,2,3]]是等效的。但是在list容器的索引语法中,后面这种写法是非法的。

多维视图

那么上面是单个维度的索引,多维索引只要把单维的堆叠起来就行就行了。

比如arr[first_slice, second_slice, ......]

结合下面的例子来理解一下。

注意所以视图的返回都是引用

但也可也通过这种方式来返回拷贝newarr = arr[::].copy()

快速创建

我们可以用任意指定的shape来创建多维数组。shape即元组或者列表比如(3,4)就是一个3x4矩阵, [2,3,4] 就是一个2x3x4的三维张量。

# 创建一个全为1的多维数组
np.ones(shape) # 创建一个全为0的多维数组
np.zeros(shape) # 创建一个全为7的多维数组
np.full(shape,7) # 创建一个随机的数组
np.random.random(shape) # n阶单位方阵即二维多维数组
np.eye(n) # 二维数组即矩阵对角线填充
np.diag([1, 2, 3])

数组操作

# 运算操作,以加操作为例
result = a - b
result = np.add(a,b) # 跟操作符等效 # 函数操作
np.exp(arr) # e的次数
np.sqrt(arr) # 平方根
np.log(arr) # 对数
a.dot(b) # a点积b
a.T # a的转置 # 比较操作
a == b # 会返回一个由True和False构成的多维数组 # 聚合操作
arr.sum() # 求和
arr.mean() # 求均值
a.corrcoef() # 求协方差

这里有一个容易弄混在于聚合操作,arr.sum()默认是对所有的元素进行求和操作。但是其实我们还可以指定arr.sum(axis=0)对某个维度进行求和。

这里以三维张量举个例子:

>>> arr = np.ones((2,3,4))
>>> arr
array([[[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]], [[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]])
>>> arr.sum(axis=0)
array([[ 2., 2., 2., 2.],
[ 2., 2., 2., 2.],
[ 2., 2., 2., 2.]])
>>> arr.sum(axis=1)
array([[ 3., 3., 3., 3.],
[ 3., 3., 3., 3.]])
>>> arr.sum(axis=2)
array([[ 4., 4., 4.],
[ 4., 4., 4.]])

简单来理解的话,对某个axis=n进行聚合操作的话就是把对应shape的第n个维度消去。

比如原本的shape为(2,3,4),如果指定axis=0,那么聚合操作的返回shape就是(3,4)。可以结合上面那个例子来理解。

速查表

练习

你以为你十分钟真的就学会了吗。

来做点习题吧。

100道numpy练习题

参考

scpy-note numpy

快速入门Numpy的更多相关文章

  1. numpy快速入门

    numpy快速入门 numpy是python的科学计算的核心库,很多更高层次的库都基于numpy.博主不太喜欢重量级的MATLAB,于是用numpy进行科学计算成为了不二选择. 本文主要参考Scipy ...

  2. pandas快速入门

    pandas快速入门 numpy之后让我们紧接着学习pandas.Pandas最初被作为金融数据分析工具而开发出来,后来因为其强大性以及友好性,在数据分析领域被广泛使用,下面让我们一窥究竟. 本文参考 ...

  3. 数据分析入门——numpy

    一.什么是numpy Numpy提供了一个在Python中做科学计算的基础库,重在数值计算,主要用于处理多维数组(矩阵)的库.用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多.本身是 ...

  4. 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇

    始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...

  5. Jupyter Notebook 快速入门

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以 ...

  6. h5py快速入门指南

    h5py是Python语言用来操作HDF5的模块.下面的文章主要介绍h5py的快速入门指南,翻译自h5py的官方文档:http://docs.h5py.org/en/latest/quick.html ...

  7. Jupyter 快速入门——写python项目博客非常有用!!!

    from:https://blog.csdn.net/m0_37338590/article/details/78862488 一.简介: Jupyter Notebook(此前被称为 IPython ...

  8. Python pandas快速入门

    Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...

  9. Pandas 快速入门(二)

    本文的例子需要一些特殊设置,具体可以参考 Pandas快速入门(一) 数据清理和转换 我们在进行数据处理时,拿到的数据可能不符合我们的要求.有很多种情况,包括部分数据缺失,一些数据的格式不正确,一些数 ...

随机推荐

  1. [洛谷P1434] [SHOI2007]滑雪

    题目链接: here we go 题外话: 谁能想到这是一道咕了两年的\(AC\)呢--当年是在搜索还半懂不懂的时候遇到的这道题,感觉真是难得要命()所以一直拖着不做,后面就下意识地逃避了搜索相关的内 ...

  2. Mass Change Queries Codeforces - 911G

    https://codeforces.com/contest/911/problem/G 没想到线段树合并还能这么搞.. 对每个权值建一个线段树(动态开点),如果权值为k的线段树上第i位为1,那么表示 ...

  3. 25 Groovy 相关资料

    Groovy Homepage Groovy API page Groovy documentation Groovy Goodness blog series from Hubert Klein I ...

  4. javaoo面向对象

  5. Java之构造方法及this、super关键字

    有关构造方法的理解: 需要对对象的数据进行初始化,则创建一个构造方法,此方法名字和类名一样,但是没有返回值(类型和具体的值都没,但是可以写return;).构造方法是用来创建对象的,所以是不能被对象调 ...

  6. html的meta总结

    引子 之前的我的博客中对于meta有个介绍,例如:http://www.haorooms.com/post/liulanq_think_ie 浏览器安全性想到的这篇文章,中间介绍了meta下面IE的一 ...

  7. Android 验证码倒计时两种方案

    使用 第一种方案:自定义控件 1.在布局中使用 <?xml version="1.0" encoding="utf-8"?> <Relativ ...

  8. Handler消息机制的一些原理(直接用code讲解)——Android开发

    package com.example.handlertest; import android.os.Bundle; import android.os.Handler; import android ...

  9. JSP serverlet区别与联系

    jsp是html包含java servlet是java包含html jsp请求到tomcat---tomcat封装了jsp到servlet实现. 所以jsp请求时候,会自动创建session 而不用在 ...

  10. JavaScript_1_简介

    1. JavaScript属于客户端脚本语言 2. JavaScript用来改进网页设计.验证表单.检测浏览器.创建cookies,以及更多的应用 a. 是为HTML设计者提供的一种编程工具 b. 可 ...