这个是NOIP的提高组的题

4804: 树网的核 

Time Limit(Common/Java):1000MS/3000MS     Memory Limit:65536KByte
Total Submit: 5            Accepted:4

Description

设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。

D(v, P)=min{d(v, u), u为路径P上的结点}。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即

ECC(F)=max{d(v, F),v∈V}

任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。

Input

包含n行:

第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。

从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。

所给的数据都是争取的,不必检验。

Output

只有一个非负整数,为指定意义下的最小偏心距。

Sample Input

Sample Output

Hint

样例输入2

8 6

1 3 2

2 3 2

3 4 6

4 5 3

4 6 4

4 7 2

7 8 3

样例输出2

5

Source

看起来是引入了一个新概念,其实还是图论的内容

树的直径是怎么定义的呢?树的直径是指树的最长简单路。求法: 一般采用两遍BFS :先任选一个起点BFS找到最长路的终点,再从终点进行BFS,则第二次BFS找到的最长路即为树的直径;有时候也会树形dp

求一段最长的路径,然后在整个图中的每一个点到该路径上的点的最大长度的最小值

直径最长所以偏心距一定是这两点到端点的最大距离(否则,直径就不为最长)我用floyd跑出最短路,然后在找到最长边,再去枚举这个点就好了啊

#include <stdio.h>
#include <algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=;
int d[N][N];
int main()
{
int n,s;
scanf("%d%d",&n,&s);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(i!=j)d[i][j]=inf;
for(int i=; i<n; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
d[v][u]=d[u][v]=w;
}
for(int k=; k<=n; k++)
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(d[i][k]<inf&&d[k][j]<inf)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
int ma=,l,r;
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(d[i][j]!=inf&&d[i][j]>ma)
ma=d[i][j],l=i,r=j;
int ans=inf,t=;
for(int i=; i<=n; i++)
if(d[l][i]+d[i][r]==d[l][r])
for(int j=; j<=n; j++)
if(d[l][j]+d[j][r]==d[l][r])
{
if(d[i][j]>s)continue;
t=max(min(d[i][l],d[j][l]),min(d[r][i],d[r][j]));
ans=min(ans,t);
}
printf("%d",ans);
return ;
}

TOJ 4804: 树网的核的更多相关文章

  1. 树网的核[树 floyd]

    描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T ...

  2. [BZOJ1999][codevs1167][Noip2007]Core树网的核

    [BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...

  3. 5.19[bzoj树网的核]

    围观了final,SJTU还是飞了,泽民同志劲啊! 膜拜归膜拜...回来开题 bzoj1999树网的核 最近就喜欢给自己找切不动的题...QAQ ok.....昨天在家里做了一个下午+晚上 又困&am ...

  4. noip2007 树网的核

    P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 设T=(V, E, W) ...

  5. Cogs 97. [NOIP2007] 树网的核 Floyd

    题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆   输入文件:core.in   输出文件:core ...

  6. [bzoj1999]树网的核

    从下午坑到网上..noip的数据太弱,若干的地方写挂结果还随便过= = 最坑的就是网上有些题解没考虑周全... 第一步是找直径,用两次bfs(或者dfs,Linux下系统栈挺大的..)解决.找出其中一 ...

  7. 洛谷 P1099 树网的核

    P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W ...

  8. NOIP 2007树网的核

    题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...

  9. BZOJ1999或洛谷1099&BZOJ2282或洛谷2491 树网的核&[SDOI2011]消防

    一道树的直径 树网的核 BZOJ原题链接 树网的核 洛谷原题链接 消防 BZOJ原题链接 消防 洛谷原题链接 一份代码四倍经验,爽 显然要先随便找一条直径,然后直接枚举核的两个端点,对每一次枚举的核遍 ...

随机推荐

  1. block 应用说明

    一.Block定义 Block可以理解为一个函数指针(即它是一个指针,指向某个函数) returnType (^blockName) (parameter list) = ^ (parameter l ...

  2. 在线matlab网站

    网址: http://octave-online.net/ 使用:

  3. 在Eclipse上运行Spark(Standalone,Yarn-Client)

    欢迎转载,且请注明出处,在文章页面明显位置给出原文连接. 原文链接:http://www.cnblogs.com/zdfjf/p/5175566.html 我们知道有eclipse的Hadoop插件, ...

  4. Windows 8.1 explorer.exe 出错 “Application Hang”

    不知道为什么explorer常常会卡一下 看系统日志发现有来源于“Application Hang”的错误 部分常规信息: 程序 explorer.exe 版本 6.3.9600.17415 停止与 ...

  5. 00_HTTP协议介绍

    1. 什么是HTTP协议 协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到 ...

  6. (转)MyBatis框架的学习(六)——MyBatis整合Spring

    http://blog.csdn.net/yerenyuan_pku/article/details/71904315 本文将手把手教你如何使用MyBatis整合Spring,这儿,我本人使用的MyB ...

  7. windows中安装模拟器后修改模拟器中的hosts方法

    1.背景 有的时候我们测试安卓的app需要绑定hosts,这个时候我们如果只是修改PC机器上的hosts,然而在模拟器中并不生效.这个时候我们就需要修改模拟器中的hosts. 模拟器中的hosts为只 ...

  8. 数组初始化 和 vector初始化

    ] = {}; 整个数组都初始化为0 vector<); 整个vector初始化为1 如果你定义的vector是这样定义的: vector<int> B; 去初始化,千万不要用: ; ...

  9. 【page-monitor 前端自动化 下篇】 实践应用

    转载文章:来源(靠谱崔小拽) 通过page-diff的初步调研和源码分析,确定page-diff在前端自动化测试和监控方面做一些事情.本篇主要介绍下,page-diff在具体的实践中的一些应用 核心d ...

  10. Git学习——把文件推送到远程仓库

    本地仓库与GitHub仓库关联 git remote add origin git@github.com:<github账户名>/<github的仓库名>.git 把本地库的所 ...