题目:http://acm.hdu.edu.cn/showproblem.php?pid=4609

算不合法的比较方便;

枚举最大的边,每种情况算了2次,而全排列算了6次,所以还要乘3;

注意枚举最大边的范围是 mx 而不是 lim !!否则会超过开的数组范围!!!

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
typedef long long ll;
int const xn=(<<),xm=1e5+;
db const Pi=acos(-1.0);
int n,rev[xn],lim,num[xm];
struct com{db x,y;}a[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
if(tp==)return;
for(int i=;i<lim;i++)a[i].x=a[i].x/lim;
}
int main()
{
int T=rd();
while(T--)
{
n=rd(); int mx=;
memset(num,,sizeof num);
for(int i=,x;i<=n;i++)x=rd(),num[x]++,mx=max(mx,x);
lim=; int l=;
while(lim<=mx+mx)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<lim;i++)a[i].x=,a[i].y=;
for(int i=;i<=mx;i++)a[i].x=num[i];
fft(a,);
for(int i=;i<lim;i++)a[i]=a[i]*a[i];
fft(a,-);
for(int i=;i<lim;i+=)a[i].x=(ll)(a[i].x+0.5)-num[i/];
ll sum=(ll)n*(n-)*(n-),ans=sum; ll pre=;
for(int i=;i<=mx;i++)//mx
{
pre+=*(ll)(a[i].x+0.5);
if(num[i])ans-=num[i]*pre;//num[i]*...!
}
printf("%.7f\n",1.0*ans/sum);
}
return ;
}

hdu 4609 3-idiots —— FFT的更多相关文章

  1. HDU 4609 3-idiots(FFT)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...

  2. HDU 4609 3-idiots (组合数学 + FFT)

    题意:给定 n 条边,问随机选出 3 条边,能组成三角形的概率是多少. 析:答案很明显就是  能组成三角形的种数 / (C(n, 3)).现在的问题是怎么求能组成三角形的种数. 这个博客说的非常清楚了 ...

  3. HDU 4609 3-idiots ——(FFT)

    这是我接触的第一个关于FFT的题目,留个模板. 这题的题解见:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html. FFT的 ...

  4. hdu 4609: 3-idiots (FFT)

    题目链接 题意:从N个数中,选出三个两两不同的数,求这三个数能够作为一个三角形的三边长的概率. 题解:用一个数组num[]记录大小为 i 的数出现的次数,通过 num[] 卷 num[] 得到 num ...

  5. 解题:HDU 4609 Three Idiots

    题面 要求组合的方法显然我们需要对桶卷积,即设$F(x)=\sum\limits_{i=1}^{maxx}x^{cnt[i]}$,然后我们初步的先把$F^2(x)$卷出来,表示选两条边.然后我们发现如 ...

  6. hdu 4609 3-idiots [fft 生成函数 计数]

    hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...

  7. 快速傅里叶变换应用之二 hdu 4609 3-idiots

    快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...

  8. bzoj 3513: [MUTC2013]idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...

  9. hdu 4609 3-idiots <FFT>

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 给定 N 个正整数, 表示 N 条线段的长度, 问任取 3 条, 可以构成三角形的概率为多 ...

  10. HDU 4609 FFT模板

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...

随机推荐

  1. 四、Silverlight中使用MVVM(四)——演练

    本来打算用MVVM实现CRUD操作的,这方面例子网上资源还挺多的,毕竟CRUD算是基本功了,因为最近已经开始学习Cailburn框架了,感觉时间 挺紧的,这篇就实现其中的更新操作吧. 功能很明确,当我 ...

  2. 1-1:CSS3课程入门之属性选择器

    div[name=jewave] 选取属性名为name且属性值是"jewave"的元素 div[name^=jewave]选取属性名为name且属性值以"jewave&q ...

  3. springboot @ConfigurationProperties @EnableConfigurationProperties @Bean @ Component

    https://www.cnblogs.com/duanxz/p/4520571.html https://juejin.im/post/5cbeaa26e51d45789024d7e2 1. Bea ...

  4. Unix环境高级编程---信号

    参考博客:http://blog.csdn.net/alex_my/article/details/39494129 1. 信号概念 何为信号? 信号是一种软中断,可以由以下情形触发: -1: 用户按 ...

  5. Unix环境高级编程—进程控制(二)

    一.函数wait和waitpid 今天我们继续通过昨天那个死爹死儿子的故事来讲(便于记忆),现在看看wait和waitpid函数. #include<sys/wait.h> pid_t w ...

  6. 引用变量的类型强转以及InstanceOf方法的使用

    引用到的类: class Person{ String name; } class Student extends Person{ String sut_no; } class ClassMate e ...

  7. squid代理缓存服务器

    参考文章 http://www.cnblogs.com/mchina/p/3812190.html ;

  8. Mongo 分组后排序取时间最大的一整条数据对象

    db.getCollection('product_protocol_new').aggregate([ {$sort:{"end_date":-1}}, {$group:{ _i ...

  9. [2018-05-27]配置VSTS认证方式使用Personal Access Token

    本文介绍下如何配置VSTS(visual studio team service,其实就是微软SaaS版的TFS)通过Personal Access Token访问其下的Git代码库. 问题 使用gi ...

  10. 《高性能Javascript》 Summary(一)

    第一章.加载和执行 Loading & Execution 原因:Javascript 的执行导致页面渲染中止等待. 解决: 将script放在页面底部,紧靠body 闭合标签之前,保证页面在 ...