因为YOLO3速度精度都很棒,所以想训练一下人脸模型,废话不多,进入正题

1写所有的配置文件

1.1 YOLO3-face.cfg

个人感觉YOLO的配置文件骑士和caffe差不多

在cfg/YOLO3.cfg的文件上改,生成自己的cfg/yolo3-face.cfg

 [net]
# Testing
# batch=
# subdivisions=
# Training
batch=
subdivisions=
width=
height=
channels=
momentum=0.9
decay=0.0005
angle=
saturation = 1.5
exposure = 1.5
hue=.

其中:

batch=64                          每batch个样本更新一次参数。

subdivisions=16               如果内存不够大,将batch分割为subdivisions个子batch,每个子batch的大小为batch/subdivisions。

训练的话把上面注释掉,测试就把训练部分的注释掉

学习率啥的就不改了,自己看着学吧

到配置文件底部更改最后的conv层参数

 [convolutional]
batch_normalize=
filters=
size=
stride=
pad=
activation=leaky [convolutional]
batch_normalize=
size=
stride=
pad=
filters=
activation=leaky [convolutional]
size=
stride=
pad=
filters=
activation=linear [yolo]
mask = ,,
anchors = ,, ,, ,, ,, ,, ,, ,, ,, ,
classes=
num=
jitter=.
ignore_thresh = .
truth_thresh =
random=

多截取了一点,只要改最后一部分就可以,(友情提醒,YOLO里面这个模块有三处,都改,估计为了收敛用的辅助)

filter=3*(4+1+classes)

classes=1

这里我的是人脸检测,so classes=1

下面的anchors懒得改了,理论上像我检测的人脸一般都是偏正方形,像(16,30)这种是没什么必要的

1.2 widerface.data

在cfg/voc.data基础上改

 classes=
train = /home/liuzg/yolo/darknet3/darknet/Pkj_face_scripts/train.txt
valid = /home/liuzg/yolo/darknet3/darknet/Pkj_face_scripts/test.txt
names = data/widerface.names
backup = backup

train和valid就是yolo需要的训练集和交叉训练集所需要的目录,后面讲生成方法

1.3 widerface.names

data/widerface.names 照抄coco.names格式,我这里检测人脸,整个文件只有一行face

2 数据集处理方法

记住你的唯一核心目的就是要生成上面1.2里面那两个txt文件,下面讲的所有方法都是辅助,你拿什么生成那两个文件和YOLO训练没有半毛钱关系

1 下载widerface数据集

2 转化成VOC格式

我是按这位老兄的脚本搞得,新手拿这个上路其实还是有点坑的,先拿这个讲

https://blog.csdn.net/minstyrain/article/details/77986262

为什么讲他坑呢,因为他脚本里面第122行(可能我自己改过了,反正附近吧)

 filename=filename.replace("/","_")  

他把文件路径名里面的路径给换了,后来也知道他为什么要换了,但是会有其他坑,所以记住核心目的就行,脚本不行,后面配合部分人工简单操作凑合过吧,go on

运行脚本后你得到了一个类似于VOC格式的数据集

3 接下来看官网 https://pjreddie.com/darknet/yolo/

官网大神已经给你写好脚本了,把VOC格式转化成YOLO格式

wget https://pjreddie.com/media/files/voc_label.py

python voc_label.py

当然我前面说了我们的是类VOC格式,所以还是要改滴,讲不清,直接贴代码吧,反正也就是各种路径找不到的问题,还有上面转VOC格式的时候,

那老哥好像还把一部分不好的数据给删了,所以并不是所有widerface数据都在VOC格式里面

 import xml.etree.ElementTree as ET
import pickle
import os
import re
from os import listdir, getcwd
from os.path import join sets=[('trainval'), ('test')] classes = ["face"] def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h) def convert_annotation(image_id):
image_id_chage=image_id.replace('/','_')
dirname=image_id[:image_id.find('/')]
if not os.path.exists('wider-faces/labels/%s/'%(dirname)):
os.makedirs('wider-faces/labels/%s/'%(dirname))
in_file = open('wider-faces/Annotations/%s.xml'%(image_id_chage))
out_file = open('wider-faces/labels/%s.txt'%(image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text) for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') wd = getcwd() for image_set in sets:
if not os.path.exists('wider-faces/labels/'):
os.makedirs('wider-faces/labels/')
image_ids = open('wider-faces/ImageSets/Main/%s.txt'%(image_set)).read().strip().split()
list_file = open('%s.txt'%(image_set), 'w')
for image_id in image_ids:
if not os.path.exists('wider-faces/Annotations/%s.xml'%(image_id)):
continue
image_id=image_id[:image_id.find(re.findall("\d",image_id)[0],4)-1]+'/'+image_id[image_id.find(re.findall("\d",image_id)[0],4):]
list_file.write('%s/wider-faces/WIDER_%s/images/%s.jpg\n'%(wd, image_set, image_id))
convert_annotation(image_id)
list_file.close() os.system("cat trainval.txt > train.txt")
os.system("cat trainval.txt test.txt > train.all.txt")

估计我的要直接用也难,讲一下要改的地方吧

官网大神分三类,训练集,交叉集,测试集,我这里只有训练集trainval,交叉集test,不要问我为什么名字不对应,我自己也被搞了半天,烦死了

convert_annatation函数就是把VOC的标记坐标格式转成YOLO认识的格式,中间我多了一个image_id_change就是因为上面那老哥把"/"换成"_"了,各种路径找不到

最后呢还需要一点人工操作

把widerface/labels复制拷贝到WINDER_trainval和WINDER_test下面,ok,到此为止,假设你一切顺利的话就可以训练了

3 官网下个预训练模型,把上面配置文件1.2里面的两个路径改成你自己的,训练吧,小伙子



YOLO3训练widerface数据集的更多相关文章

  1. Fast RCNN 训练自己数据集 (1编译配置)

    FastRCNN 训练自己数据集 (1编译配置) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https:/ ...

  2. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  3. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  4. 使用py-faster-rcnn训练VOC2007数据集时遇到问题

    使用py-faster-rcnn训练VOC2007数据集时遇到如下问题: 1. KeyError: 'chair' File "/home/sai/py-faster-rcnn/tools/ ...

  5. YOLOV4在linux下训练自己数据集(亲测成功)

    最近推出了yolo-v4我也准备试着跑跑实验看看效果,看看大神的最新操作 这里不做打标签工作和配置cuda工作,需要的可以分别百度搜索   VOC格式数据集制作,cuda和cudnn配置 我们直接利用 ...

  6. Scaled-YOLOv4 快速开始,训练自定义数据集

    代码: https://github.com/ikuokuo/start-scaled-yolov4 Scaled-YOLOv4 代码: https://github.com/WongKinYiu/S ...

  7. win10 下的YOLOv3 训练 wider_face 数据集检测人脸

    1.数据集下载 (1)wider_face 数据集网址为 http://shuoyang1213.me/WIDERFACE/index.html 下载以上几项文件(这里推荐 google Drive ...

  8. Fast RCNN 训练自己数据集 (2修改数据读取接口)

    Fast RCNN训练自己的数据集 (2修改读写接口) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ http ...

  9. 【Mxnet】----1、使用mxnet训练mnist数据集

    使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list

随机推荐

  1. mac os x升级MOUNTAIN LION后svn command not found的解决

    因为svn是个开发工具 所以苹果把他移到 Xcode developer package 里 去了,所以你没装xcode之类的,先去AppStore把xcode装了   装好之后sudo vi /et ...

  2. 用apache做为代理下载本地pdf文件

    有一些公司会用apache做为代理,下载服务器上的pdf文件.以下是apache做为代理的配置 一. 环境 centos6.5  192.168.69.3 二. yum安装apache 服务 [zxj ...

  3. 点聚-weboffice 6.0 (三)

    1.页面 var filename="<%=request.getParameter("filePath").toString()%>"; docu ...

  4. 经常遇到js的面试题

    大家都知道在面试的时候,很多前端的必须要问的就是js的问题,最近我们公司也有很多这样的面试,我提了一些个问题,还有我面试的时候面试官面试我的问题汇总,也有百度的别人的,希望对那些刚进入这个行业的有一些 ...

  5. 【题解】CF45G Prime Problem

    [题解]CF45G Prime Problem 哥德巴赫板子题? \(\frac{n(n+1)}{2}\)若是质数,则不需要分了. 上式 若是奇数,那么拆成2和另一个数. 上式 若是偶数吗,直接\(O ...

  6. Java for LeetCode 102 Binary Tree Level Order Traversal

    Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  7. Raspberry Pi3 ~ 使用eclipse进行远程调试

    为了开发方便需要在电脑上对树莓派进行远程Debug. l  在eclipse中安装交叉编译(参照开发环境搭建)    arm-linux-gnueabihf-gcc l  树莓派中检查是否安装了gdb ...

  8. es6技巧写法

    为class绑定多个值 普通写法 :class="{a: true, b: true}" 其他 :class="['btn', 'btn2', {a: true, b: ...

  9. CentOS已经安装命令,但提示找不到

    今天在虚机上装了个CENTOS.装好后,好多命令都提示找不到,如tcpdump.arp.ifconfig.查看安装包,都已经安装过. ------------无敌分割线------------- # ...

  10. Exception of type 'System.OutOfMemoryException' was thrown

    最近刚换了服务器,开始测试的时候未发现什么问题,可是一旦同一时间段操作的人比较多的时候,就会抛出如下错误: Server Error in '/' Application. Exception of ...