转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

A. Writing Code

Programmers working on a large project have just received a task to write exactly m lines of code. There are n programmers working on a project, the i-th of them makes exactly ai bugs in every line of code that he writes.

Let's call a sequence of non-negative integers v1, v2, ..., vn a plan, if v1 + v2 + ... + vn = m. The programmers follow the plan like that: in the beginning the first programmer writes the first v1 lines of the given task, then the second programmer writes v2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let's call a plan good, if all the written lines of the task contain at most b bugs in total.

Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer mod.

Input

The first line contains four integers nmbmod (1 ≤ n, m ≤ 500, 0 ≤ b ≤ 500; 1 ≤ mod ≤ 109 + 7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.

The next line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 500) — the number of bugs per line for each programmer.

Output

Print a single integer — the answer to the problem modulo mod.

Sample test(s)
input
3 3 3 100
1 1 1
output
10
input
3 6 5 1000000007
1 2 3
output
0
input
3 5 6 11
1 2 1
output
0

一个完全背包的问题,cf的3秒,果断上n^3dp

 #include <iostream>
#include <sstream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype>
using namespace std;
#define XINF INT_MAX
#define INF 0x3FFFFFFF
#define MP(X,Y) make_pair(X,Y)
#define PB(X) push_back(X)
#define REP(X,N) for(int X=0;X<N;X++)
#define REP2(X,L,R) for(int X=L;X<=R;X++)
#define DEP(X,R,L) for(int X=R;X>=L;X--)
#define CLR(A,X) memset(A,X,sizeof(A))
#define IT iterator
typedef long long ll;
typedef pair<int,int> PII;
typedef vector<PII> VII;
typedef vector<int> VI;
ll dp[][];
ll a[];
int main()
{
ios::sync_with_stdio(false);
int n,m,b,MOD;
cin>>n>>m>>b>>MOD;
for(int i=;i<=n;i++){
cin>>a[i];
}
dp[][]=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=;k<=b;k++){
if(k>=a[i])
dp[j][k]+=dp[j-][k-a[i]];
dp[j][k]%=MOD;
}
} }
ll ans=;
for(int i=;i<=b;i++){
ans+=dp[m][i];
ans%=MOD;
}
cout<<ans<<endl;
return ;
}
D. Road Improvement

The country has n cities and n - 1 bidirectional roads, it is possible to get from every city to any other one if you move only along the roads. The cities are numbered with integers from 1 to n inclusive.

All the roads are initially bad, but the government wants to improve the state of some roads. We will assume that the citizens are happy about road improvement if the path from the capital located in city x to any other city contains at most one bad road.

Your task is — for every possible x determine the number of ways of improving the quality of some roads in order to meet the citizens' condition. As those values can be rather large, you need to print each value modulo 1 000 000 007 (109 + 7).

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 2·105) — the number of cities in the country. Next line contains n - 1positive integers p2, p3, p4, ..., pn (1 ≤ pi ≤ i - 1) — the description of the roads in the country. Number pi means that the country has a road connecting city pi and city i.

Output

Print n integers a1, a2, ..., an, where ai is the sought number of ways to improve the quality of the roads modulo 1 000 000 007 (109 + 7), if the capital of the country is at city number i.

Sample test(s)
input
3
1 1
output
4 3 3
input
5
1 2 3 4
output
5 8 9 8 5

树形dp

一开始看完D题,一想,这不是树形DP水题嘛,中间用个除法,逆元搞一搞就好了。。。然后就被petr给hack了。。。原因便是会发生除0的情况,于是,我们需要避免出现除法。

那么我们需要统计出不包括这个子树的,并且以其父亲为根的方案数。

 #include <iostream>
#include <sstream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype>
using namespace std;
#define XINF INT_MAX
#define INF 0x3FFFFFFF
#define MP(X,Y) make_pair(X,Y)
#define PB(X) push_back(X)
#define REP(X,N) for(int X=0;X<N;X++)
#define REP2(X,L,R) for(int X=L;X<=R;X++)
#define DEP(X,R,L) for(int X=R;X>=L;X--)
#define CLR(A,X) memset(A,X,sizeof(A))
#define IT iterator
typedef long long ll;
typedef pair<int,int> PII;
typedef vector<PII> VII;
typedef vector<int> VI;
const ll MOD=;
ll dp[];
ll dp1[];
vector<int>G[];
ll dp2[];
ll pre[];
ll last[];
void dfs(int x){
dp[x]=;
for(int i=;i<G[x].size();i++){
int v=G[x][i];
dfs(v);
dp[x]=dp[x]*(dp[v]+)%MOD;
}
}
void dfs1(int x){
dp1[x]=dp[x]*dp2[x]%MOD;
pre[]=;
for(int i=;i<G[x].size();i++){
int v = G[x][i];
pre[i+]=pre[i]*(dp[v]+)%MOD;
}
last[(int)G[x].size()]=;
for(int i=(int)G[x].size()-;i>=;i--){
int v = G[x][i];
last[i]=last[i+]*(dp[v]+)%MOD;
}
for(int i=;i<G[x].size();i++){
int v = G[x][i];
dp2[v]=dp2[x]*pre[i]%MOD*last[i+]%MOD;
dp2[v]++;
}
for(int i=;i<G[x].size();i++){
int v = G[x][i];
dfs1(v);
}
}
int main()
{
ios::sync_with_stdio(false);
int n;
cin>>n;
int a;
for(int i=;i<=n;i++){
cin>>a;
G[a].PB(i);
}
fill(dp2,dp2+n+,);
dfs();
dfs1();
for(int i=;i<=n;i++)cout<<dp1[i]<<" ";
cout<<endl;
return ;
}

Codeforces Round #302 (Div. 1)的更多相关文章

  1. 完全背包 Codeforces Round #302 (Div. 2) C Writing Code

    题目传送门 /* 题意:n个程序员,每个人每行写a[i]个bug,现在写m行,最多出现b个bug,问可能的方案有几个 完全背包:dp[i][j][k] 表示i个人,j行,k个bug dp[0][0][ ...

  2. 构造 Codeforces Round #302 (Div. 2) B Sea and Islands

    题目传送门 /* 题意:在n^n的海洋里是否有k块陆地 构造算法:按奇偶性来判断,k小于等于所有点数的一半,交叉输出L/S 输出完k个L后,之后全部输出S:) 5 10 的例子可以是这样的: LSLS ...

  3. 水题 Codeforces Round #302 (Div. 2) A Set of Strings

    题目传送门 /* 题意:一个字符串分割成k段,每段开头字母不相同 水题:记录每个字母出现的次数,每一次分割把首字母的次数降为0,最后一段直接全部输出 */ #include <cstdio> ...

  4. Codeforces Round #302 (Div. 1) C. Remembering Strings DP

    C. Remembering Strings Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  5. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  6. Codeforces Round #302 (Div. 2) C. Writing Code 简单dp

    C. Writing Code Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544/prob ...

  7. Codeforces Round #302 (Div. 2) B. Sea and Islands 构造

    B. Sea and Islands Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544/p ...

  8. Codeforces Round #302 (Div. 2) A. Set of Strings 水题

    A. Set of Strings Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544/pr ...

  9. Codeforces Round #302 (Div. 1) 训练

    链接: http://codeforces.com/contest/543 过程: 惨淡的只做出了A和C 题解: A 题解: 简单的一道题 我们用$dp[i][j]$表示当前考虑到前num个人(这个另 ...

  10. Codeforces Round #302 (Div. 2).C. Writing Code (dp)

    C. Writing Code time limit per test 3 seconds memory limit per test 256 megabytes input standard inp ...

随机推荐

  1. ECSTORE1.2 重启开启信任登陆模块(删除KEY)

    1).若启用Mongodb 需要删除KEY分别为 1 2 3 be90a668d9f2eb1950bae1bf6b0835ce 939e64939c3f65cfb646e7948c5b80df 58d ...

  2. memcache运维整理

    memcache运维总结 第一部分:memcache安装 1.安装libevent 2.安装memcache 3.安装php的memcache扩展 4.测试 第二部分:memcache客户端操作 1. ...

  3. 使用接口的方式调用远程服务 ------ 利用动态调用服务,实现.net下类似Dubbo的玩法。

    分布式微服务现在成为了很多公司架构首先项,据我了解,很多java公司架构都是 Maven+Dubbo+Zookeeper基础上扩展的. Dubbo是Alibaba开源的分布式服务框架,它最大的特点是按 ...

  4. 转载的别人的ajax跨域解决方法

    http://dynamic.vip.xxxxxx.com/active/<controllers>/<active>/<id> 放在浏览器地址栏中访问可以得到正确 ...

  5. 一个ajax实现表单上传文件的神器 formdata

    通过传统的form表单提交的方式上传文件: $.ajax({ url : "http://localhost:8080/STS/rest/user", type : "P ...

  6. SDWebImage 官方文档

    API documentation is available at CocoaDocs - SDWebImage Using UIImageView+WebCache category with UI ...

  7. 使用Qt实现MDI风格的主窗体

    文章来源:http://hi.baidu.com/wuyunju/item/3d20164c99a276f6dc0f6c52 QT提供了MDIArea控件可以很方便的实现标准的MDI窗体,但用起来并不 ...

  8. Linux watch 命令

    man watch: WATCH(1) Linux User's Manual WATCH(1) NAME watch - execute a program periodically, showin ...

  9. 【Android】通过Java代码替换TabHost中的drawableTop资源

    在博客 http://blog.csdn.net/jueblog/article/details/11837445 中的Tab选项卡中, 点击相应的Tab选项,图标没有发生改变. 这些资源图片也没有尽 ...

  10. js深入研究之自定义混合Mixin函数

    <script type="text/javascript"> /* 增加函数 */ function augment(receivingClass, givingCl ...