Problem Description
杭州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为V1,V2,....VK,V1,那么必须满足K>,就是说至除了出发点以外至少要经过2个其他不同的景区,而且不能重复经过同一个景区。现在8600需要你帮他找一条这样的路线,并且花费越少越好。
Input
第一行是2个整数N和M(N <= , M <= ),代表景区的个数和道路的条数。
接下来的M行里,每行包括3个整数a,b,c.代表a和b之间有一条通路,并且需要花费c元(c <= )。
Output
对于每个测试实例,如果能找到这样一条路线的话,输出花费的最小值。如果找不到的话,输出"It's impossible.".
 
Sample Input

 
Sample Output
It's impossible.

这道题题意很简单,就是求最小环。如果用最朴素的最短路解决,复杂度很高。怎么办?用Floyed解决,枚举每一个点K,和连接它的两个点i,j(i,j均<k),使i,j,k构成环。则ans=min{ans,dis[i][j]+g[k][i]+g[k][j]},根据Floyed原理,若i,j<k则dis[i][j]与k无关。所以要现计算最值,在做更新。此外,若输入格式给出的是边权的形式,一定注意重边问题,这点很坑爹!!!

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
int dirx[]={,,-,};
int diry[]={-,,,};
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 106
#define inf 1<<26
int n,m;
int mp[N][N];
int dis[N][N];
int ans_mincost;
void flyod(){
for(int k=;k<=n;k++){
for(int i=;i<k;i++){
for(int j=i+;j<k;j++){
ans_mincost=min(ans_mincost,mp[i][k]+mp[k][j]+dis[i][j]);
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
} int main()
{
while(scanf("%d%d",&n,&m)==){ for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j) mp[i][j]=dis[i][j]=;
else mp[i][j]=dis[i][j]=inf;
}
} for(int i=;i<m;i++){
int a,b,d;
scanf("%d%d%d",&a,&b,&d);
if(d<mp[a][b])
mp[a][b]=mp[b][a]=dis[a][b]=dis[b][a]=d;
} ans_mincost=inf; flyod(); if(ans_mincost!=inf)
printf("%d\n",ans_mincost);
else
printf("It's impossible.\n"); }
return ;
}

hdu 1599 find the mincost route(flyod求最小环)的更多相关文章

  1. hdu 1599 find the mincost route floyd求无向图最小环

    find the mincost route Time Limit: 1000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. HDU 1599 find the mincost route(floyd求最小环 无向图)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1599 find the mincost route Time Limit: 1000/2000 MS ...

  3. hdu 1599 find the mincost route (最小环与floyd算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1599 find the mincost route Time Limit: 1000/2000 MS ...

  4. hdu 1599 find the mincost route(无向图的最小环)

    find the mincost route Time Limit: 1000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  5. hdu 1599 find the mincost route 最小环

    题目链接:HDU - 1599 杭州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为V1,V2,....VK,V1,那么必须 ...

  6. hdoj 1599 find the mincost route【floyd+最小环】

    find the mincost route Time Limit: 1000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. hdu 1599 find the mincost route

    http://acm.hdu.edu.cn/showproblem.php?pid=1599 floyd找最小环. #include <cstdio> #include <cstri ...

  8. HDU 1599 find the mincost route (无向图的最小环)

    题意: 给一个带权无向图,求其至少有3个点组成的环的最小权之和. 思路: (1)DFS可以做,实现了确实可以,只是TLE了.量少的时候应该还是可以水一下的.主要思路就是,深搜过程如果当前点搜到一个点访 ...

  9. HDU 1599 find the mincost route (无向图floyd最小环详解)

    转载请注明出处:http://blog.csdn.net/a1dark 分析:终于弄懂了floyd的原理.以前的理解一直肤浅.所以一做到floyd应用的题.就拙计了.其实floyd的本质DP.利用前K ...

随机推荐

  1. C++小知识之sprintf用法

    sprintf   字串格式化命令,主要功能是把格式化的数据写入某个字符串中.sprintf 是个变参函数,使用时经常出问题,而且只要出问题通常就是能导致程序崩溃的内存访问错误,但好在由sprintf ...

  2. Angular Textarea 高度自动变化

    很多前端开发的朋友可能都会遇到textarea 输入框的高度不能自动随着用户的输入变化的问题,今儿小生也遇到了, 并通过网络上的信息解决了这个问题,于是将解决方法贴上,以作备忘. directiveA ...

  3. 【转】invokeRequired属性和 invoke()方法

    C#中禁止跨线程直接访问控件,InvokeRequired是为了解决这个问题而产生的,当一个控件的InvokeRequired属性值为真时,说明有一个创建它以外的线程想访问它. 此时它将会在内部调用n ...

  4. SPRING源码分析:IOC容器

    在Spring中,最基本的IOC容器接口是BeanFactory - 这个接口为具体的IOC容器的实现作了最基本的功能规定 - 不管怎么着,作为IOC容器,这些接口你必须要满足应用程序的最基本要求: ...

  5. xcode 执行时模拟器不可选的问题

    好久没写博客了,上一次是什么时候都想不起来了. 之前总认为脑袋记住了,用过了就能够了,干嘛要写博客,简直浪费时间.事实上没事写写博客优点还是挺多的.这样既能够对自己用过的和学到的东西做一个总结,也能提 ...

  6. [转]Laravel 4之路由

    Laravel 4之路由 http://dingjiannan.com/2013/laravel-routing/ Laravel 4路由是一种支持RESTful的路由体系, 基于symfony2的R ...

  7. Android窗口管理服务WindowManagerService对输入法窗口(Input Method Window)的管理分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8526644 在Android系统中,输入法窗口 ...

  8. Tomcat 配置篇

    Tomcat 配置一.Tomcat 基本介绍 1.关键目录 a) bin 该目录包含了启动.停止和启动其他的脚本,如startup.sh.shutdown.sh等; b) conf 配置文件和一些文档 ...

  9. eclipse安装Flash Builder 4后变成中文,怎么解决

    修改eclipse.ini启动参数: -startup plugins/org.eclipse.equinox.launcher_1.2.0.v20110502.jar --launcher.libr ...

  10. 公司项目笔记-导出excel

    一.asp.net中导出Excel的方法: 在asp.net中导出Excel有两种方法,一种是将导出的文件存放在服务器某个文件夹下面,然后将文件地址输出在浏览器上:一种是将文件直接将文件输出流写给浏览 ...