继续畅通工程

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10765    Accepted Submission(s): 4704

Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。

 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。

当N为0时输入结束。

 
Output
每个测试用例的输出占一行,输出全省畅通需要的最低成本。
 
Sample Input
3
1 2 1 0
1 3 2 0
2 3 4 0
3
1 2 1 0
1 3 2 0
2 3 4 1
3
1 2 1 0
1 3 2 1
2 3 4 1
0
 
Sample Output
3
1
0
 
Author
ZJU
 
Source
 

这道题虽然是一道模板题,但是有一点要注意:

不能使用  Scanner sc = new Scanner(new BufferedInputStream(System.in));  和

System.out.println();

否则会超时;

推荐使用:  BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));   和

PrintWriter pw=new PrintWriter(new OutputStreamWriter(System.out),true);

克鲁斯卡尔

import java.io.*;
import java.util.*;
public class Main {
public int n,m,sum;
public ArrayList<kr> ay=new ArrayList<kr>();;
public int pattern[];
PrintWriter pw;
public static void main(String[] args) throws IOException{
new Main().work();
}
public void work() throws IOException{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
pw=new PrintWriter(new OutputStreamWriter(System.out),true);
n=Integer.parseInt(bu.readLine());
while(n!=0){
m=(n*(n-1))>>1;
ay.clear();
sum=0;
for(int i=0;i<m;i++){
String str[]=bu.readLine().split(" ");
int a=Integer.parseInt(str[0]);
int b=Integer.parseInt(str[1]);
int c=Integer.parseInt(str[2]);
int d=Integer.parseInt(str[3]);
if(d==1)
c=0;
kr k=new kr(a,b,c);
ay.add(k);
}
Collections.sort(ay);
Kruskral();
pw.println(sum);
n=Integer.parseInt(bu.readLine());
}
}
public void Kruskral(){
pattern=new int[n+1];
for(int i=1;i<=n;i++){
pattern[i]=i;
}
for(int i=0;i<ay.size();i++){
union(ay.get(i).a,ay.get(i).b,ay.get(i).c);
}
}
public void union(int a,int b,int c){
int aa=find(a);
int bb=find(b);
if(aa==bb)
return;
if(aa>bb){
pattern[bb]=aa;
sum+=c;
//pw.println(sum);
}
else{
pattern[aa]=bb;
sum+=c;
}
}
public int find(int x){
int k,r,s;
r=x;
while(r!=pattern[r]){
r=pattern[r];
}
k=x;
while(k!=r){
s=pattern[k];
pattern[k]=r;
k=s;
}
return r;
}
}
class kr implements Comparable<kr>{
int a;
int b;
int c;
kr(int a,int b,int c){
this.a=a;
this.b=b;
this.c=c;
}
public int compareTo(kr o) {
return this.c>o.c?1:-1;
}
}

普利姆算法

import java.io.*;
import java.util.*; public class Main {
public int MAX=2000000;
public int map[][];
public int n,m;
PrintWriter pw;
public static void main(String args[]) throws IOException{
new Main().work();
}
public void work() throws IOException{
//Scanner sc=new Scanner(new BufferedInputStream(System.in));
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
pw=new PrintWriter(new OutputStreamWriter(System.out),true);
n=Integer.parseInt(bu.readLine());
while(n!=0){
m=(n*(n-1))>>1;
map=new int[n+1][n+1];
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
map[i][j]=MAX;
}
} for(int i=1;i<=m;i++){
String str[]=bu.readLine().split(" ");
int a=Integer.parseInt(str[0]);
int b=Integer.parseInt(str[1]);
int c=Integer.parseInt(str[2]);
int d=Integer.parseInt(str[3]);
if(d==1){
c=0;
}
if(map[a][b]>c)
map[a][b]=map[b][a]=c;
}
getDistance();
n=Integer.parseInt(bu.readLine());
}
}
////Prim(普里姆算法)
public void getDistance(){
int k=0,sum=0;
int dis[]=new int[n+1];
int mark[]=new int[n+1];
for(int i=2;i<=n;i++){
dis[i]=map[1][i];//初始化起点到其他点之间的距离
}
mark[1]=1;
for(int i=1;i<n;i++){
int min=MAX;
// 每次循环寻找的最短的边
for(int j=2;j<=n;j++){
if(mark[j]==0&&dis[j]<min){
min=dis[j];
k=j;
}
}
if(min==MAX) break;
mark[k]=1;
sum+=dis[k];
//到一个新的点,从新计算到其他点之间的距离
for(int j=2;j<=n;j++){
if(mark[j]==0&&dis[j]>map[k][j])
dis[j]=map[k][j];
}
}
pw.println(sum);
}
}

HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))的更多相关文章

  1. HDU 1879 继续畅通工程(Prim||Kruscal模板题)

    原题链接 Prim(点归并) //异或运算:相同为假,不同为真 #include<cstdio> #include<algorithm> #define maxn 105 us ...

  2. hdu 1879 继续畅通工程

    /************************************************************************/ /* hdu 1879 继续畅通工程 Time L ...

  3. 经典问题----最小生成树(prim普里姆贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  4. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  5. 普里姆算法(Prim)

    概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图(带权图)里搜索最小生成树.即此算法搜索到的边(Edge)子集所构成的树中,不但包括了连通图里的所有顶点(Vertex)且其所有边的权 ...

  6. 查找最小生成树:普里姆算法算法(Prim)算法

    一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...

  7. ACM第四站————最小生成树(普里姆算法)

    对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成 ...

  8. MST最小生成树及Prim普鲁姆算法

    MST在前面学习了Kruskal算法,还有一种算法叫做Prim的.这两者的区别是Prim算法适合稠密图,比如说鸟巢这种几乎所有点都有相连的图.其时间复杂度为O(n^2),其时间复杂度与边的数目无关:而 ...

  9. 图->连通性->最小生成树(普里姆算法)

    文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...

随机推荐

  1. 移动网络山寨版(OpenBTS)【2】频段的故事

    OpenBTS 系统有两个看点.一个是无线收发,尤其是频段的处理,另一个是网络系统,尤其是替代传统的基站(BTS),基站控制器(BSC),移动控制中心(MSC),以及(HLR/VLR)的另类方案. 先 ...

  2. 微信的分享功能(针对web手机站页面进行的分享功能)

    把这段js粘贴进,设置可以分享的页面,当微信打开,即可微信进行分享各个圈 $(function(){ var lujing=$("#logimg").attr("src& ...

  3. egret-android-support-gradle版

    从3.1.3开始,Egret已经实现了Gradle构建!所以下文你爱看不看! 迟钝的Egret从3.1.3版本才开始支持Gradle,而笔者早在1.6.x版本就已经支持了,说明什么?说明Egret在某 ...

  4. SVG关注复杂图形的网页绘制技术

    SVG 是使用 XML 来描述二维图形和绘图程序的语言. 学习之前应具备的基础知识: 继续学习之前,你应该对以下内容有基本的了解: HTML XML 基础 如果希望首先学习这些内容,请在本站的首页选择 ...

  5. c语言结构体排序示例

    设计性实验编程实现对学生成绩表的相关信息排序.实验要求:⑴ 建立一个由n个学生的考试成绩表,每条信息由学号.姓名和分数组成.⑵ 按学号排序,并输出排序结果.⑶ 按分数排序,分数相同的则按学号有序,并输 ...

  6. mysql数据库学习(二)--表操作

    一.表操作 以下内容都是自己学习的时候看过的一些知识,作为笔记记录一下吧,大部分都是所看文章的内容. 1.创建表 前面的基础篇笔记是相当于搭建了一个方便管理的文件夹树根,下面要学习的是一些关于表的知识 ...

  7. IEnumerable和IEnumerator 详解 【转】

    初学C#的时候,老是被IEnumerable.IEnumerator.ICollection等这样的接口弄的糊里糊涂,我觉得有必要切底的弄清楚IEnumerable和IEnumerator的本质. 下 ...

  8. C++隐式转换

    #include <iostream> using namespace std; class A { int a; public: A(int n):a(n) { cout << ...

  9. Python学习笔记(十五):类基础

    以Mark Lutz著的<Python学习手册>为教程,每天花1个小时左右时间学习,争取两周完成. --- 写在前面的话 2013-7-24 23:59 学习笔记 1,Python中的大多 ...

  10. UTF-8 BOM编码格式文件对SSI的影响

    最近在用SSI(Server Side Includes)加载子模块的时候发现一个奇怪的现象,加载完成后的网页老是CSS有问题,被加载模块渲染后老是有空白部分.下面给出简单的示例. 文件a.html的 ...