http://www.lydsy.com/JudgeOnline/problem.php?id=2741

思路:我们先将a变成a的异或前缀,这样问题就变成了,在l-1到r区间内,找出i,j令a[i]^a[j]最大。

假如i是固定的,我们可以建一个可持久化trie,在l-1到r区间内贪心寻找最优,但是这题i和j都不是固定的,如果暴力枚举i,那时间复杂度最坏是m*n*logn。

因此我们考虑这样:将n个数字分块,预处理出数组f[i][j],代表从第i块的开头作为左端点固定,j为右端点,这里面能产生的最优异或和,可以得到f[i][j]=max(f[i][j-1],query(root[start[i]-1],root[j],a[j])),这样转移,就能在接近O(n)的时间复杂度内预处理出数组,这样,对于m个询问中的每个l,r,假如l属于块i,那么我们先让ans=f[i+1][r],这样剩下我们只需要暴力解决l所属块i内的答案,这个求法就是上面说的固定点i,在root[l-1],root[r]区间内贪心查找,更新答案即可,还有这题,在强制在线的时候lastans+x和lastans+y可能会爆int。

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#define ll long long
int n,m,a[],b[],ch[][],sz,block_num,block_size,size[];
int f[][],root[];
int read(){
char ch=getchar();int t=,f=;
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void insert(int &k,int kk,int v,int dep){
k=++sz;
size[k]=size[kk]+;
if (dep==-) return;
ch[k][]=ch[kk][],ch[k][]=ch[kk][];
if (v&(<<dep)) insert(ch[k][],ch[kk][],v,dep-);
else insert(ch[k][],ch[kk][],v,dep-);
}
int query(int x,int y,int v){
int res=;
for (int i=;i>=;i--){
int t=((v&(<<i))>);
if (size[ch[y][t^]]-size[ch[x][t^]]>){
res|=(<<i);
y=ch[y][t^];
x=ch[x][t^];
}else{
y=ch[y][t];
x=ch[x][t];
}
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
block_size=(int)sqrt(n);
block_num=n/block_size+(n%block_size!=);
for (int i=;i<=n;i++) {scanf("%d",&a[i]);a[i]^=a[i-];}
int ans=;
for (int i=;i<=n;i++) insert(root[i],root[i-],a[i],);
for (int i=;i<=block_num;i++)
for (int j=(i-)*block_size+;j<=n;j++){
f[i][j]=std::max(f[i][j-],query(root[(i-)*block_size],root[j],a[j]));
if (i==) f[i][j]=std::max(f[i][j],a[j]);
}
while (m--){
int x,y;
scanf("%d%d",&x,&y);
x%=n;y%=n;
x=(x+(ans%n))%n+;
y=(y+(ans%n))%n+;
if (x>y) std::swap(x,y);
x--;
int num=x/block_size+(x%block_size!=);
ans=;
int l=num*block_size+;
if (l<=y) ans=f[num+][y];
l=std::min(l,y);
for (int j=x;j<l;j++)
ans=std::max(ans,query(root[x],root[y],a[j]));
printf("%d\n",ans);
}
}

BZOJ 2741 【FOTILE模拟赛】L(可持久化trie)的更多相关文章

  1. BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)

    题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...

  2. bzoj 2741 [FOTILE模拟赛] L

    Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...

  3. 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块

    题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...

  4. 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  5. BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)

    显然做个前缀和之后变成询问区间内两个数异或最大值. 一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv). 观察到数据范围很微妙.考虑瞎分块. 设f[i][j]为第i个 ...

  6. 【bzoj2741】[FOTILE模拟赛] L

    Portal --> bzoj2741 Solution 突然沉迷分块不能自拔 考虑用分块+可持久化trie来解决这个问题 对于每一块的块头\(L\),预处理\([L,i]\)区间内的所有子区间 ...

  7. BZOJ2741:[FOTILE模拟赛]L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  8. bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie

    2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1116  Solved: 292[Submit][Status] ...

  9. 【BZOJ】【2741】【FOTILE模拟赛】L

    可持久化Trie+分块 神题……Orz zyf & lyd 首先我们先将整个序列搞个前缀异或和,那么某一段的异或和,就变成了两个数的异或和,所以我们就将询问[某个区间中最大的区间异或和]改变成 ...

  10. 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树

    [BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...

随机推荐

  1. MySQL导出数据文件

    SELECT * INTO OUTFILE '/root/a.txt' FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' FROM t_log_in ...

  2. Android 获取当前日期算前一年、前一月、前一天Calendar

    使用Calendar的add(int field, int amount)方法 Calendar ca = Calendar.getInstance();//得到一个Calendar的实例 ca.se ...

  3. highchart 实现mrtg

    最近需要对流量图进行重构, <%@ page language="java" contentType="text/html; charset=UTF-8" ...

  4. 【转】ubuntu下安装及设置FTP服务器!!

    原文网址:http://hujizhou.blog.51cto.com/514907/1290915 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律 ...

  5. EBS查找运行请求时间,参数等

    --查找运行请求时间,参数等(可以是某用户的,某个报表) select c.user_name, papf.full_name, b.user_concurrent_program_name, a.r ...

  6. Struts2源代码解读之Action调用

    对于Struts2源代码的分析已经有些时日了,虽然网上有很多解读代码,不过自己还是写一个放上来,供大家参考一下. 解读过程: 直接在action类中打断点(包括构造函数和待执行方法)进行debug调试 ...

  7. pyqt QTableWidget例子学习(重点)

    # -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrator' from PyQt4.QtGui import * from PyQ ...

  8. SQL Server,Oracle,DB2索引建立语句的对比

    原文引至:http://jvortex.blog.163.com/blog/static/16961890020122141010878/ 我们知道,索引是用于加速数据库查询的数据库对象.原理就是减少 ...

  9. SqlDependency不起作用

    今天使用SqlDependency,结果不起作用,失效,不管数据库怎么修改,这边都没反应,OnChange事件总是不执行,很奇怪.我打开msdn里的例子,代码复制出来,结果没问题,能执行,那剩下来的问 ...

  10. XCode Could not launch &quot;&quot; failed to get the task for process

    在Xcode下编译project正常,在模拟器下执行正常,最后在真机上执行的时候出现了例如以下错误: Could not launch "FeedMeWorms" failed t ...