柯南君:看大数据时代下的IT架构(9)消息队列之RabbitMQ--案例(RPC起航)
二、Remote procedure call (RPC)(using the Java client)
三、Client interface(客户端接口)
- fibonacci_rpc = FibonacciRpcClient()
- result = fibonacci_rpc.call(4)
- print "fib(4) is %r" % (result,)
四、 总体来说,在RabbitMQ进行RPC远程调用是比较容易的。client发送请求的Message然后server返回响应结果。为了收到响应client在publish message时需要提供一个”callback“(回调)的queue地址。code如下:
- result = channel.queue_declare(exclusive=True)
- callback_queue = result.method.queue
- channel.basic_publish(exchange='',
- routing_key='rpc_queue',
- properties=pika.BasicProperties(
- reply_to = callback_queue,
- ),
- body=request)
Message properties
AMQP 预定义了14个属性。它们中的绝大多很少会用到。以下几个是平时用的比较多的:
- delivery_mode: 持久化一个Message(通过设定值为2)。其他任意值都是非持久化。
- content_type: 描述mime-type 的encoding。比如设置为JSON编码:设置该property为application/json。
- reply_to: 一般用来指明用于回调的queue(Commonly used to name a callback queue)。
- correlation_id: 在请求中关联处理RPC响应(correlate RPC responses with requests)。
四、Correlation Id 在上个小节里,实现方法是对每个RPC请求都会创建一个callback queue。这是不高效的。幸运的是,在这里有一个解决方法:为每个client创建唯一的callback queue。
这又有其他问题了:收到响应后它无法确定是否是它的,因为所有的响应都写到同一个queue了。上一小节的correlation_id在这种情况下就派上用场了:对于每个request,都设置唯一的一个值,在收到响应后,通过这个值就可以判断是否是自己的响应。如果不是自己的响应,就不去处理。
五、(总结)
工作流程:
- 当客户端启动时,它创建了匿名的exclusive callback queue.
- 客户端的RPC请求时将同时设置两个properties: reply_to设置为callback queue;correlation_id设置为每个request一个独一无二的值.
- 请求将被发送到an rpc_queue queue.
- RPC端或者说server一直在等待那个queue的请求。当请求到达时,它将通过在reply_to指定的queue回复一个message给client。
- client一直等待callback queue的数据。当message到达时,它将检查correlation_id的值,如果值和它request发送时的一致那么就将返回响应。
六、
Putting it all together
- private static int fib(int n) throws Exception {
- if (n == 0) return 0;
- if (n == 1) return 1;
- return fib(n-1) + fib(n-2);
- }
RPCServer.java :
private static final String RPC_QUEUE_NAME = "rpc_queue"; ConnectionFactory factory = new ConnectionFactory(); factory.setHost("localhost"); Connection connection = factory.newConnection(); Channel channel = connection.createChannel(); channel.queueDeclare(RPC_QUEUE_NAME, false, false, false, null); channel.basicQos(); QueueingConsumer consumer = new QueueingConsumer(channel); channel.basicConsume(RPC_QUEUE_NAME, false, consumer); System.out.println(" [x] Awaiting RPC requests"); while (true) { QueueingConsumer.Delivery delivery = consumer.nextDelivery(); BasicProperties props = delivery.getProperties(); BasicProperties replyProps = new BasicProperties .Builder() .correlationId(props.getCorrelationId()) .build(); String message = new String(delivery.getBody()); int n = Integer.parseInt(message); System.out.println(" [.] fib(" + message + ")"); String response = "" + fib(n); channel.basicPublish( "", props.getReplyTo(), replyProps, response.getBytes()); channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false); }
服务器代码相当简单:
- 像往常一样,我们首先建立连接、通道和声明队列。
- 我们可能想要运行多个服务器进程。为了分散负载同样在多个服务器,我们需要设置在channel.basicQos prefetchCount设置。
- 我们使用basicConsume访问队列。然后我们进入while循环,我们等待请求消息,并发送响应工作。
private Connection connection; private Channel channel; private String requestQueueName = "rpc_queue"; private String replyQueueName; private QueueingConsumer consumer; public RPCClient() throws Exception { ConnectionFactory factory = new ConnectionFactory(); factory.setHost("localhost"); connection = factory.newConnection(); channel = connection.createChannel(); replyQueueName = channel.queueDeclare().getQueue(); consumer = new QueueingConsumer(channel); channel.basicConsume(replyQueueName, true, consumer); } public String call(String message) throws Exception { String response = null; String corrId = java.util.UUID.randomUUID().toString(); BasicProperties props = new BasicProperties .Builder() .correlationId(corrId) .replyTo(replyQueueName) .build(); channel.basicPublish("", requestQueueName, props, message.getBytes()); while (true) { QueueingConsumer.Delivery delivery = consumer.nextDelivery(); if (delivery.getProperties().getCorrelationId().equals(corrId)) { response = new String(delivery.getBody()); break; } } return response; } public void close() throws Exception { connection.close(); }
客户端代码部分涉及到:
- 我们建立了一个"connecttion"(连接) 和 "channel"(通道)并且为replies(回复)声明一个独一无二的"callback"(回调);
- 我们订阅了"callback"(回调)队列,这样我们就可以收到RPC的回应了;
- 我们调用的方法是实际的RPC;
- 接下来我们publish(发布)请求消息,有两个属性,分别是:replyTo 和 correlationId;
- 在这点,我们可以坐下来,直到适当的响应到达;
- while循环做了一件非常简单的工作,它会检查每一个消息响应,如果当前的最后,我们将响应给用户;
RPCClient fibonacciRpc = new RPCClient(); System.out.println(" [x] Requesting fib(30)"); String response = fibonacciRpc.call("); System.out.println(" [.] Got '" + response + "'"); fibonacciRpc.close();
现在是时候,该看看我们的整体完整的示例源代码了:RPCClent.java(包括基本的异常处理)和RPCServer.java,像往常一样编译和设置路径(可以参考前面的教程)
import com.rabbitmq.client.ConnectionFactory; import com.rabbitmq.client.Connection; import com.rabbitmq.client.Channel; import com.rabbitmq.client.QueueingConsumer; import com.rabbitmq.client.AMQP.BasicProperties; import java.util.UUID; public class RPCClient { private Connection connection; private Channel channel; private String requestQueueName = "rpc_queue"; private String replyQueueName; private QueueingConsumer consumer; public RPCClient() throws Exception { ConnectionFactory factory = new ConnectionFactory(); factory.setHost("localhost"); connection = factory.newConnection(); channel = connection.createChannel(); replyQueueName = channel.queueDeclare().getQueue(); consumer = new QueueingConsumer(channel); channel.basicConsume(replyQueueName, true, consumer); } public String call(String message) throws Exception { String response = null; String corrId = UUID.randomUUID().toString(); BasicProperties props = new BasicProperties .Builder() .correlationId(corrId) .replyTo(replyQueueName) .build(); channel.basicPublish("", requestQueueName, props, message.getBytes()); while (true) { QueueingConsumer.Delivery delivery = consumer.nextDelivery(); if (delivery.getProperties().getCorrelationId().equals(corrId)) { response = new String(delivery.getBody(),"UTF-8"); break; } } return response; } public void close() throws Exception { connection.close(); } public static void main(String[] argv) { RPCClient fibonacciRpc = null; String response = null; try { fibonacciRpc = new RPCClient(); System.out.println(" [x] Requesting fib(30)"); response = fibonacciRpc.call("); System.out.println(" [.] Got '" + response + "'"); } catch (Exception e) { e.printStackTrace(); } finally { if (fibonacciRpc!= null) { try { fibonacciRpc.close(); } catch (Exception ignore) {} } } } }<strong> </strong>
RPCServer.java:
import com.rabbitmq.client.ConnectionFactory; import com.rabbitmq.client.Connection; import com.rabbitmq.client.Channel; import com.rabbitmq.client.QueueingConsumer; import com.rabbitmq.client.AMQP.BasicProperties; public class RPCServer { private static final String RPC_QUEUE_NAME = "rpc_queue"; private static int fib(int n) { ) ; ) ; ) + fib(n-); } public static void main(String[] argv) { Connection connection = null; Channel channel = null; try { ConnectionFactory factory = new ConnectionFactory(); factory.setHost("localhost"); connection = factory.newConnection(); channel = connection.createChannel(); channel.queueDeclare(RPC_QUEUE_NAME, false, false, false, null); channel.basicQos(); QueueingConsumer consumer = new QueueingConsumer(channel); channel.basicConsume(RPC_QUEUE_NAME, false, consumer); System.out.println(" [x] Awaiting RPC requests"); while (true) { String response = null; QueueingConsumer.Delivery delivery = consumer.nextDelivery(); BasicProperties props = delivery.getProperties(); BasicProperties replyProps = new BasicProperties .Builder() .correlationId(props.getCorrelationId()) .build(); try { String message = new String(delivery.getBody(),"UTF-8"); int n = Integer.parseInt(message); System.out.println(" [.] fib(" + message + ")"); response = "" + fib(n); } catch (Exception e){ System.out.println(" [.] " + e.toString()); response = ""; } finally { channel.basicPublish( "", props.getReplyTo(), replyProps, response.getBytes("UTF-8")); channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false); } } } catch (Exception e) { e.printStackTrace(); } finally { if (connection != null) { try { connection.close(); } catch (Exception ignore) {} } } } }
$ javac -cp rabbitmq-client.jar RPCClient.java RPCServer.java
我们的RPC service现在准备好了,我们开始启动server:
$ java -cp $CP RPCServer [x] Awaiting RPC requests
发布一个fibonacci 数字,运行在client(客户端):
$ java -cp $CP RPCClient [x] Requesting fib(30)
本节提供的设计并不是唯一的RPC服务实现,但它还是有一定的优点的:
- 如果RPC server(服务器)太慢了,你仅仅需要运行另一个,就可以扩展;尝试在新的控制台,运行第二个吧;
- 在客户端,RPC需要发送和接收的消息只有一个,不需要像queueDeclare 同步调用,因为RPC客户端为了一个RPC请求,只需要一个网络往返;
我们的代码依然很简单,不试图去解决更加繁杂的问题,但是非常重要,像以下这样:
- 如果没有服务运行,客户端将怎么去做?
- 客户端应该有RPC超时么?
- 如果服务器出现故障,爆出一个异常,应该发给客户端么?
- 防止传入错误的消息(如范围检查、类型)前处理
柯南君:看大数据时代下的IT架构(9)消息队列之RabbitMQ--案例(RPC起航)的更多相关文章
- 柯南君:看大数据时代下的IT架构(5)消息队列之RabbitMQ--案例(Work Queues起航)
二.Work Queues(using the Java Client) 走起 在第上一个教程中我们写程序从一个命名队列发送和接收消息.在这一次我们将创建一个工作队列,将用于分发耗时的任务在多个工 ...
- 柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)
柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航) 二.起航 本章节,柯南君将从几个层面,用官网例子讲解一下RabbitMQ的实操经典程序案例,让大家重 ...
- 柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装、配置与监控
柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控 一.安装 1.安装Erlang 1)系统编译环境(这里采用linux/unix 环境) ① 安装环境 虚拟机:VMw ...
- 看大数据时代下的IT架构(1)业界消息队列对比
一.MQ(Message Queue) 即 消息队列,一般用于应用系统解耦.消息异步分发,能够提高系统吞吐量.MQ的产品有很多,有开源的,也有闭源,比如ZeroMQ.RabbitMQ. ActiveM ...
- 柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍
一.基础概念详细介绍 1.引言 你是否遇到过两个(多个)系统间需要通过定时任务来同步某些数据?你是否在为异构系统的不同进程间相互调用.通讯的问题而苦恼.挣扎?如果是,那么恭喜你,消息服务让你可以很轻松 ...
- 柯南君:看大数据时代下的IT架构(6)消息队列之RabbitMQ--案例(Publish/Subscribe起航)
二.Publish/Subscribe(发布/订阅)(using the Java Client) 为了说明这个模式,我们将构建一个简单的日志系统.它将包括两个项目: 第一个将发出日志消息 第二个将接 ...
- 柯南君:看大数据时代下的IT架构(8)消息队列之RabbitMQ--案例(topic起航)
二.Topic(主题) (using the Java client) 上一篇文章中,我们进步改良了我们的日志系统.我们使用direct类型转发器,使得接收者有能力进行选择性的接收日志,,而非fano ...
- 柯南君:看大数据时代下的IT架构(7)消息队列之RabbitMQ--案例(routing 起航)
二.Routing(路由) (using the Java client) 在前面的学习中,构建了一个简单的日志记录系统,能够广播所有的日志给多个接收者,在该部分学习中,将添加一个新的特点,就是可以只 ...
- 大数据时代下EDM邮件营销的变革
根据研究,今年的EDM邮件营销的邮件发送量比去年增长了63%,许多方法可以为你收集用户数据,这些数据可以帮助企业改善自己在营销中的精准度,相关性和执行力. 最近的一项研究表明,中国800强企业当中超过 ...
随机推荐
- Mvc Webapi+Fiddler调试 (WebAPI 一)
Fiddler Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯,设置断点,查看所有的“进出”Fiddler的数据(指cookie,html,js, ...
- Android_神奇的android:clipChildren属性
正文 一.效果图 看到这个图时你可以先想想如果是你,你怎么实现这个效果.马上想到用RelativeLayout?NO,NO,NO,,, 二.实现代码 <?xml version="1. ...
- Linux定时任务Crontab命令详解
linux 系统则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的计划性工作,因此这个系统服务是默认启动的.另 外, 由于使用者自己也可以设置计划任务,所以, ...
- LinkList的实现
public class MyLinkedList<AnyType> implements Iterable<AnyType> { @Override public Itera ...
- Hibernate防止SQL注入
如果在查询字段中输入单引号"'",则会报错,这是因为输入的单引号和其他的sql组合在一起编程了一个新的sql,实际上这就是SQL注入漏洞,后来我在前台和后台都对输入的字符进行了判断 ...
- SSH连接不上
网上查了 大概说,一要安装开启ssh服务 然后关掉防火墙 service sshd restart service iptables stop 可是我用了之后还是连接不上, 很郁闷. 我尝试着ping ...
- CC++初学者编程教程(8) VS2013配置编程助手与QT
1. 2. 配置编程助手 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26 ...
- centos6.5 Eclipse C/C++开发环境及项目创建测试
1,新建C++ project
- windows编程之菜单操作
分清几个概念 <1>"主菜单" 和 "顶层菜单" 是一个意思. <2>主菜单中的项目叫做 "弹出菜单" 或者 &qu ...
- 【双向广搜+逆序数优化】【HDU1043】【八数码】
HDU上的八数码 数据强的一B 首先:双向广搜 先处理正向搜索,再处理反向搜索,直至中途相遇 visit 和 队列都是独立的. 可以用一个过程来完成这2个操作,减少代码量.(一般还要个深度数组) 优化 ...