HDU 5735 Born Slippy(拆值DP+位运算)
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5735
【题目大意】
给出一棵树,树上每个节点都有一个权值w,w不超过216,树的根为1,从一个点往根的方向走,可以得到他的祖先序列,现在需要从v1点的祖先序列中挑选出一定数量的点,组成数列v1,v2,v3……vm,要求vi是vi-1的祖先,求dp[v1]=max(dp[vi]+(w[v1] opt w[vi])),opt是一种运算,在题目中可为xor,or或者and,最后求出ans=sum_{i=1}^{n}(i*(w[i]+dp[i]))
【题解】
对于这道题,我们首先考虑它的简化版本,在一个一维数组上求dp[i]=max(dp[j]+(w[i] opt w[j])) (j<i),显然枚举前缀的O(n2)的用脚趾头都能想出来的算法,出题人是不会给过的。那么我们观察一下题目,发现一个很奇巧的东西,w的值不超过216,难道说每次计算以w结尾的dp最大值,然后枚举二进制?一次6w多的计算量,明显也没有产生太大的优化,顺着这个思路下去,这道题采用了一种拆值DP的神奇的方式,
dp[i]=max(dp[j]+([w[i]前八位]opt[w[j]前八位])<<8+[w[i]后八位]opt[w[j]后八位])
记dp[A][B]=以前八位为A结尾,后八位以B结尾的dp值,于是就可以发现:
dp[A][B]=max(dp[i][B]+([w[i]前八位]opt[w[A]前八位])<<8)
那么,在知道了后八位的情况下,前八位就能轻松dp,既然这样,那我们就在计算完每个节点之后,预处理后八位的dp值:
dp[A][i]=max(dp[A][j]+([w[i]后八位]opt[w[j]后八位]))
这样子每次转移所需要的复杂度就只有28,可以接受。顺利完成。
而这道题所处理的却是树上的问题,那么在每条链上DP的过程中预处理祖先节点dp数组,按照上述方法计算子节点的dp值即可,而对于不同的子节点,dp数组备份,然后回溯即可。
【代码】
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
typedef unsigned int UI;
const int N=65540,mod=1e9+7;
UI T,n,i,w[N],nxt[N],x,f[256][256],tmp[N][256],v[256],ans;
vector<UI>g[N];
char op[5];
UI opt(UI a,UI b){
if(op[0]=='A')return a&b;
if(op[0]=='O')return a|b;
if(op[0]=='X')return a^b;
}
void dfs(UI x){
UI dp=0,A=w[x]>>8,B=w[x]&255;
for(int i=0;i<256;i++)if(v[i])dp=max(dp,f[i][B]+(opt(A,i)<<8));
ans=(1LL*x*(dp+w[x])+ans)%mod;
for(v[A]++,i=0;i<256;i++)tmp[x][i]=f[A][i],f[A][i]=max(f[A][i],opt(B,i)+dp);
for(int i=0;i<g[x].size();i++)dfs(g[x][i]);
for(v[A]--,i=0;i<256;i++)f[A][i]=tmp[x][i];
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d %s",&n,op);
for(int i=1;i<=n;i++)scanf("%d",&w[i]),g[i].clear();
for(int i=2;i<=n;i++)scanf("%d",&x),g[x].push_back(i);
ans=0; dfs(1);
printf("%d\n",ans);
}return 0;
}
HDU 5735 Born Slippy(拆值DP+位运算)的更多相关文章
- hdu 5735 Born Slippy 暴力
Born Slippy 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5735 Description Professor Zhang has a r ...
- HDU 5735 - Born Slippy
题意: 一棵 n 个节点的根树,i 节点权重 wi 对每一个节点s,找到这样一个长 m 的标号序列 v : 1. vi是vi-1 的祖先 2. f[s] = w[vi] + ∑(i=2, m) (w[ ...
- hdu 4336 Card Collector (概率dp+位运算 求期望)
题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 求集合中选一个数与当前值进行位运算的max
求集合中选一个数与当前值进行位运算的max 这是一个听来的神仙东西. 先确定一下值域把,大概\(2^{16}\),再大点也可以,但是这里就只是写写,所以无所谓啦. 我们先看看如果暴力求怎么做,位运算需 ...
- 基于DP+位运算的RMQ算法
来源:http://blog.csdn.net/y990041769/article/details/38405063 RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n) ...
- HDU 1074 Doing Homework (动态规划,位运算)
HDU 1074 Doing Homework (动态规划,位运算) Description Ignatius has just come back school from the 30th ACM/ ...
- HDU 3006 The Number of set(位运算 状态压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3006 题目大意:给定n个集合,每个集合都是由大于等于1小于等于m的数字组成,m最大为14.由给出的集合 ...
- [BZOJ1151][CTSC2007]动物园zoo 解题报告|DP|位运算
Description 最近一直在为了学习算法而做题,这道题是初一小神犇让我看的.感觉挺不错于是写了写. 这道题如果是一条线的话我们可以构造一个DP f[i,j]表示以i为起点,i,i+1...i+4 ...
- HDU 2276 Kiki & Little Kiki 2(矩阵位运算)
Kiki & Little Kiki 2 转载自:点这里 [题目链接]Kiki & Little Kiki 2 [题目类型]矩阵位运算 &题意: 一排灯,开关状态已知,每过一秒 ...
随机推荐
- vijos 1067 Warcraft III 守望者的烦恼 矩阵
题目链接 我们可以很容易的推出dp的式子, dp[i] = sigma(j : 1 to k) dp[i-j]. 但是n太大了, 没有办法直接算, 所以我们构造一个矩阵, 然后快速幂就好了. 就像这样 ...
- visual studio 配置OpenGL环境
首先在网上下载一个GLUT工具包. glut.zip,大约一百多kb. 解压之后得到这么几个文件: 将glut.h复制到C:\Program Files (x86)\Microsoft Visual ...
- [原创]linux简单之美(二)
原文链接:linux简单之美(二) 我们在前一章中看到了如何仅仅用syscall做一些简单的事,现在我们看能不能直接调用C标准库中的函数快速做一些"复杂"的事: section . ...
- cdn与http缓存
http缓存与cdn相关技术 摘要:最近要做这个主题的组内分享,所以准备了一个星期,查了比较多的资料.准备的过程虽然很烦很耗时间,不过因为需要查很多的资料,因此整个过程下来,对这方面的知识影响更加 ...
- 采购件不允许挂BOM
应用 Oracle Bill Of Materiel 层 Level Function 函数名 Funcgtion Name BOM_BOMFDBOM 表单名 Form Name BOMFDBOM ...
- EditText无法失去焦点、失去焦点隐藏软键盘
很奇怪,我在给EditText设置setOnFocusChangeListener()监听,但是始终未能成功,焦点一直存在,不知其原因,,代码如下: et_username.setOnFocusCha ...
- kafka学习(二)-zookeeper集群搭建
zookeeper概念 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名 服务等.Zookeeper是h ...
- Wet Shark and Flowers(思维)
C. Wet Shark and Flowers time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Android图片裁剪之自由裁剪
我的博客http://blog.csdn.net/dawn_moon 客户的需求都是非常怪的.我有时候在给客户做项目的时候就想骂客户是sb.可是请你相信我,等你有需求,自己变成客户的时候,给你做项目的 ...
- Web安全測试二步走
Web安全測试时一个比較复杂的过程,软件測试人员能够在当中做一些简单的測试,例如以下: Web安全測试也应该遵循尽早測试的原则,在进行功能測试的时候(就应该运行以下的測试Checklist安全測试场景 ...