By Recognizing These Guys, We Find Social Networks Useful

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 2354    Accepted Submission(s): 613

Problem Description
Social
Network is popular these days.The Network helps us know about those
guys who we are following intensely and makes us keep up our pace with
the trend of modern times.
But how?
By what method can we know the
infomation we wanna?In some websites,maybe Renren,based on social
network,we mostly get the infomation by some relations with those
"popular leaders".It seems that they know every lately news and are
always online.They are alway publishing breaking news and by our
relations with them we are informed of "almost everything".
(Aha,"almost everything",what an impulsive society!)
Now,it's
time to know what our problem is.We want to know which are the key
relations make us related with other ones in the social network.
Well,what is the so-called key relation?
It
means if the relation is cancelled or does not exist anymore,we will
permanently lose the relations with some guys in the social
network.Apparently,we don't wanna lose relations with those guys.We must
know which are these key relations so that we can maintain these
relations better.
We will give you a relation description map and you should find the key relations in it.
We
all know that the relation bewteen two guys is mutual,because this
relation description map doesn't describe the relations in twitter or
google+.For example,in the situation of this problem,if I know you,you
know me,too.
 
Input
The input is a relation description map.
In the first line,an integer t,represents the number of cases(t <= 5).
In
the second line,an integer n,represents the number of guys(1 <= n
<= 10000) and an integer m,represents the number of relations between
those guys(0 <= m <= 100000).
From the second to the (m +
1)the line,in each line,there are two strings A and B(1 <=
length[a],length[b] <= 15,assuming that only lowercase letters
exist).
We guanrantee that in the relation description map,no one has
relations with himself(herself),and there won't be identical
relations(namely,if "aaa bbb" has already exists in one line,in the
following lines,there won't be any more "aaa bbb" or "bbb aaa").
We
won't guarantee that all these guys have relations with each other(no
matter directly or indirectly),so of course,maybe there are no key
relations in the relation description map.
 
Output
In the first line,output an integer n,represents the number of key relations in the relation description map.
From the second line to the (n + 1)th line,output these key relations according to the order and format of the input.
 
Sample Input
1
4 4
saerdna aswmtjdsj
aswmtjdsj mabodx
mabodx biribiri
aswmtjdsj biribiri
 
Sample Output
1
saerdna aswmtjdsj
 
Source
 
 

题意:有n个人名和m条边(用人名来表示),求出这个图中的所有桥(以人名表示边来输出)。

算法:用map来hash,边(a,b)的hash值为a*10000+b,然后求桥,最后按输入顺序遍历一遍所有边,如果为桥的话就输出。

此题有一个坑就是当图不连通的时候直接输出0就可以了。

 #include <iostream>
#include <stdio.h>
#include <map>
#include <memory.h>
#include <vector>
using namespace std; const int maxn = + ;
int low[maxn],pre[maxn],dfs_clock=;
map<int,bool> isbridge;
vector<int> G[maxn];
int cnt_bridge;
int father[maxn]; int getid(int u,int v)
{
return u*+v;
} int dfs(int u, int fa)
{
father[u]=fa;
int lowu = pre[u] = ++dfs_clock;
int child = ;
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v]) // 没有访问过v
{
child++;
int lowv = dfs(v, u);
lowu = min(lowu, lowv); // 用后代的low函数更新自己
if(lowv > pre[u]) // 判断边(u,v)是否为桥
{
isbridge[getid(u,v)]=isbridge[getid(v,u)]=true;
cnt_bridge++;
}
}
else if(pre[v] < pre[u] && v != fa)
{
lowu = min(lowu, pre[v]); // 用反向边更新自己
}
}
return low[u]=lowu;
} void init(int n)
{
isbridge.clear();
memset(pre,,sizeof pre);
cnt_bridge=dfs_clock=;
for(int i=; i<n; i++)
{
G[i].clear();
}
} bool vis[maxn];
int cnt;
int dfs_conn(int u)
{
vis[u]=true;
cnt++;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!vis[v])
dfs_conn(v);
}
} bool isconn(int n)
{
memset(vis,false,sizeof vis);
cnt=;
dfs_conn();
return cnt==n;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif int T;
cin>>T;
while(T--)
{
map<string,int> id;
map<int,string> id2;
vector<int> edges;
int n,m;
scanf("%d %d",&n,&m);
init(n);
int num=;
for(int i=;i<m;i++)
{ char str1[],str2[];
scanf("%s %s",str1,str2);
int a,b;
if(id.count((string)str1)>)
{
a=id[(string)str1];
}
else
{
a=id[(string)str1]=num++;
} if(id.count((string)str2)>)
{
b=id[(string)str2];
}
else
{
b=id[(string)str2]=num++;
} id2[a]=(string)str1;
id2[b]=(string)str2; G[a].push_back(b);
G[b].push_back(a);
edges.push_back(getid(a,b));
} if(!isconn(n))
{
puts("");
continue;
} dfs(,-);
cout<<cnt_bridge<<endl;
for(int i=;i<edges.size();i++)
{
if(isbridge[edges[i]])
{
printf("%s %s\n",id2[edges[i]/].c_str(),id2[edges[i]%].c_str());
}
}
} return ;
}

hdu3849-By Recognizing These Guys, We Find Social Networks Useful:双连通分量的更多相关文章

  1. HDU 3849 By Recognizing These Guys, We Find Social Networks Useful(双连通)

    HDU 3849 By Recognizing These Guys, We Find Social Networks Useful pid=3849" target="_blan ...

  2. hdoj 3849 By Recognizing These Guys, We Find Social Networks Useful【双连通分量求桥&&输出桥&&字符串处理】

    By Recognizing These Guys, We Find Social Networks Useful Time Limit: 2000/1000 MS (Java/Others)     ...

  3. HDU 3849 By Recognizing These Guys, We Find Social Networks Useful

    By Recognizing These Guys, We Find Social Networks Useful Time Limit: 1000ms Memory Limit: 65536KB T ...

  4. HDU3849-By Recognizing These Guys, We Find Social Networks Useful(无向图的桥)

    By Recognizing These Guys, We Find Social Networks Useful Time Limit: 2000/1000 MS (Java/Others)     ...

  5. Social networks and health: Communicable but not infectious

    Harvard Men’s Health Watch Poet and pastor John Donne famously proclaimed “No man is an island.” It ...

  6. 【论文笔记】Social Role-Aware Emotion Contagion in Image Social Networks

    Social Role-Aware Emotion Contagion in Image Social Networks 社会角色意识情绪在形象社交网络中的传染 1.摘要: 心理学理论认为,情绪代表了 ...

  7. 《Predict Anchor Links across Social Networks via an Embedding Approach》阅读笔记

    基本信息 文献:Predict Anchor Links across Social Networks via an Embedding Approach 时间:2016 期刊:IJCAI 引言 预测 ...

  8. 谣言检测(RDCL)——《Towards Robust False Information Detection on Social Networks with Contrastive Learning》

    论文信息 论文标题:Towards Robust False Information Detection on Social Networks with Contrastive Learning论文作 ...

  9. Deep learning-based personality recognition from text posts of online social networks 阅读笔记

    文章目录 一.摘要 二.模型过程 1.文本预处理 1.1 文本切分 1.2 文本统一 2. 基于统计的特征提取 2.1 提取特殊的语言统计特征 2.2 提取基于字典的语言特征 3. 基于深度学习的文本 ...

随机推荐

  1. Java 将自己定义的对象作为HashMap的key

    须要继承Map的equals函数和hashCode函数 package com.category; import java.util.HashMap; public class GenCategory ...

  2. DFBle.swift

    ////  DFBle.swift//  DFBle////  Created by LeeYaping on 15/9/2.//  Copyright (c) 2015年 lisper. All r ...

  3. Java基础知识强化61:经典查找之 常见查找算法小结

    一.顺序查找 条件:无序或有序队列. 原理:按顺序比较每个元素,直到找到关键字为止. 时间复杂度:O(n) 二.二分查找(折半查找) 条件:有序数组 原理:查找过程从数组的中间元素开始,如果中间元素正 ...

  4. mybatis之mapper.xml分析

    select: id:方法名,在同一个mapper.xml中,要保持唯一 parameterType:指定输入的参数类型,不是必须的,如果不指定,mybatis会自动识别(推荐指定). resultT ...

  5. 用ueditor上传图片、文件等到七牛云存储

    ueditor上传文件,是用数据流的形式上传的. 而七牛云存储官方文档中,只提供了文件路径上传的方式. 但是,仅仅是在官方文档中写了这一种方式. 事实上,利用VS的对象管理器,打开Qiniu的dll, ...

  6. Android(工具・集成)

    ■ NDK Android从始(2009)至终是支持JNI的. 只不过一开始没有NDK.需要自己安装交叉编译器创建so,然后放到assert之类捆绑so发布. 有了NDK.有了什么? libc lib ...

  7. 使用DataSet数据集删除记录

    使用DataSet删除记录和使用DataSet更新记录非常的相似,DataSet删除记录的步骤如下所示. q  创建一个Connection对象. q  创建一个DataAdapter对象. q  初 ...

  8. dijkstra堆优化模板

    #include<iostream> #include<cmath> #include<algorithm> #include<cstring> #in ...

  9. shell中对于命令的搜寻顺序

    当你在shell命令行输入一条命令时,shell的搜寻顺序是如何的呢?当你的脚本名字和shell中的函数名字重名,shell是如何决定运行哪一个的? 在shell中,shell对于命令的搜寻优先级为: ...

  10. MongoDB 介绍及Windows下安装

    一.MongoDB简介 MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSql数据库中比较热门的一种.它在许多场景下可用于替代传统的关系型数据库或键/值存储方式.Mongo使用C++ ...