题目链接

给n个盒子, 每个盒子里面有f[i]个小球, 然后一共可以取sum个小球。问有多少种取法, 同一个盒子里的小球相同, 不同盒子的不同。

首先我们知道, n个盒子放sum个小球的方式一共有C(sum+n-1, n-1)种, 但是这个题, 因为每个盒子里的小球有上限, 所有用刚才那种方法不行。

但是我们可以枚举。 n只有20, 一共(1<<20)-1种状态, 每种状态, 1代表取这个盒子里的小球超过了上限, 0代表没有。

一共取sum个, 如果一个盒子里面的小球超过了上限, 那么就还剩下sum-f[i]-1个,因为可以为空, 所以要多减一。

然后就用容斥就可以了。

lucas定理, C(n, k)%mod p = C(n%p, k%p)*C(n/p, k/p)%mod p, 前面那部分可以直接算, 后面那部分继续lucas递归。

C(n, k)可以用乘法逆元算。

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const ll mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
ll pow(ll a, ll b) {
ll tmp = ;
while(b) {
if(b&1LL) {
tmp = tmp*a%mod;
}
a = (a*a)%mod;
b>>=1LL;
}
return tmp;
}
ll C(ll a, ll b) {
if(a<b) {
return ;
}
if(b>a-b) {
b = a-b;
}
ll s1 = , s2 = ;
for(ll i = ; i<b; i++) {
s1 = s1*(a-i)%mod;
s2 = s2*(i+)%mod;
}
return s1*pow(s2, mod-)%mod;
}
ll lucas(ll a, ll b) {
if(b == )
return ;
return C(a%mod, b%mod)*lucas(a/mod, b/mod)%mod;
}
ll a[];
int main()
{
int n, flag;
ll s, sum, ans = ;
cin>>n>>s;
for(int i = ; i<n; i++) {
scanf("%I64d", &a[i]);
}
for(int i = ; i<(<<n); i++) {
sum = s, flag = ;
for(int j = ; j<n; j++) {
if(i&(<<j)) {
flag *= -;
sum = sum-a[j]-;
}
}
if(sum<)
continue;
ll tmp = C((sum+n-)%mod, n-)%mod;
ans = (ans+flag*tmp)%mod;
}
ans = (ans+mod)%mod;
cout<<ans<<endl;
return ;
}

codeforces 451E. Devu and Flowers 容斥原理+lucas的更多相关文章

  1. Codeforces 451E Devu and Flowers(容斥原理)

    题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...

  2. Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】

    题意:每个箱子里有\( f[i] \)种颜色相同的花,现在要取出\( s \)朵花,问一共有多少种颜色组合 首先枚举\( 2^n \)种不满足条件的情况,对于一个不被满足的盒子,我们至少拿出\( f[ ...

  3. codeforces 451E Devu and Flowers

    题意:有n个瓶子每个瓶子有 f[i] 支相同的颜色的花(不同瓶子颜色不同,相同瓶子花视为相同) 问要取出s支花有多少种不同方案. 思路: 如果每个瓶子的花有无穷多.那么这个问题可以转化为  s支花分到 ...

  4. Codeforces 451E Devu and Flowers(组合计数)

    题目地址 在WFU(不是大学简称)第二次比赛中做到了这道题.高中阶段参加过数竞的同学手算这样的题简直不能更轻松,只是套一个容斥原理公式就可以.而其实这个过程放到编程语言中来实现也没有那么的复杂,不过为 ...

  5. CodeForces - 451E Devu and Flowers (容斥+卢卡斯)

    题意:有N个盒子,每个盒子里有fi 朵花,求从这N个盒子中取s朵花的方案数.两种方法不同当且仅当两种方案里至少有一个盒子取出的花的数目不同. 分析:对 有k个盒子取出的数目超过了其中的花朵数,那么此时 ...

  6. Codeforces Round #258 E Devu and Flowers --容斥原理

    这题又是容斥原理,最近各种做容斥原理啊.当然,好像题解给的不是容斥原理的方法,而是用到Lucas定理好像.这里只讲容斥的做法. 题意:从n个容器中总共取s朵花出来,问有多少种情况.其中告诉你每个盒子中 ...

  7. CF 451E Devu and Flowers

    可重集的排列数 + 容斥原理 对于 \(\{A_1 * C_1, A _2 * C_2, \cdots, A_n * C_n\}\)这样的集合来说, 设 \(N = \sum_{i = 1} ^ n ...

  8. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  9. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

随机推荐

  1. jquery判断移动设备代码片段;pc、iphone、安卓

    $(document).ready(function () { /* 判断设备*/ var browser={ versions:function(){ var u = navigator.userA ...

  2. uva 639 Don't Get Rooked 变形N皇后问题 暴力回溯

    题目:跟N皇后问题一样,不考虑对角冲突,但考虑墙的存在,只要中间有墙就不会冲突. N皇后一行只能放一个,而这题不行,所以用全图暴力放棋,回溯dfs即可,题目最多就到4*4,范围很小. 刚开始考虑放一个 ...

  3. nyist 303序号互换(数学推理)

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=303 思路: 开始看错题了,以为最多只有两个字母. 字母转数字的表达式很容易看出来是:(2 ...

  4. 跟我一起学写jQuery插件开发方法(转载)

    jQuery如此流行,各式各样的jQuery插件也是满天飞.你有没有想过把自己的一些常用的JS功能也写成jQuery插件呢?如果你的答案是肯定的,那么来吧!和我一起学写jQuery插件吧!     很 ...

  5. iOS App集成Apple Pay教程(附示例代码)

    苹果在本周一发布了iOS 8.1版本,并正式开放了Apple Pay支付系统.Apple Pay是一个基于NFC的支付系统,不久将被数以万计的线下零售商店予以支持.即便这项科技并不是彻底的突破性进展, ...

  6. 理解ROS的参数

    记住每次操作之前都要在一个单独的终端中运行ros的核心. roscore rosparam命令允许你在ROS的参数服务器上操作和存储数据,参数服务器可以存储整数,浮点数,布尔类型,字典,列表.ROS使 ...

  7. python 缩进导致的问题

    今天写Python 看着没有问题 运行就各种问题 object has no attribute 最后发现 Vim 设置里面有个  tabstop  我设置的是4 应该设置成8

  8. WPF:向客户端发出某一属性值已更改的通知INotifyPropertyChanged接口

    Person.cs using System.ComponentModel; namespace _01_INotifyPropertyChanged { class Person:INotifyPr ...

  9. java下拉框,滚动条

    package com.soft.test; /** * 下拉列表.下拉框.滚动条的使用 */ import javax.swing.*; import java.awt.*; public clas ...

  10. iOS 使用xib创建cell的两种初始化方式

    曾几何时,被自己坑过,为了防止下次继续被自己坑,我决定了!在每个我能看到的地方,都把问题写一遍!!! 方法一: ? 1 2 3 4 第一步: [self.collectionView register ...