project euler 12 Highly divisible triangular number
Highly divisible triangular number Problem 12 The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors?
def divisor(num,j):
count1 = 1
count2 = 1
if num%2 == 0:
lst1 = [num//2]
lst2 = [num+1]
else:
lst1 = [(num+1)//2]
lst2 = [num]
for i in range(2,lst1[0]):
if lst1[0] % i ==0:
count1 += 1
# print(i)
lst1.append(i)
for i in range(2,lst2[0]):
if lst2[0] % i ==0:
count2 += 1
lst2.append(i)
count = count1 + count2 + count1*count2
return count n = 1
import time
print(time.time())
while True:
j = n*(n+1)//2
if str(j)[-1] != '':
#print(n)
n += 1
continue
count = divisor(n,j)
# print(j,n,count)
n += 1
if count >= 500:
print(j,n,count)
break print(time.time()) 1462342495.953848
76576500 12376 575
1462342499.651143
约4S
对求因子的算法进行一点改进,能提高一半效率。
for i in range(2,lst1[0]//2+1): for i in range(2,lst2[0]//2+1):
>>>
1462414510.288464
76576500 12376 575
1462414512.207313
再次对求因子进行改进,效率提高10倍!!
for i in range(2,int(sqrt(lst1[0])+1)):
if lst1[0] % i ==0:
count1 += 2
1462415389.778016
76576500 12376 575
1462415389.91842
>>>
project euler 12 Highly divisible triangular number的更多相关文章
- Project Euler Problem 12-Highly divisible triangular number
最直接的想法就是暴力搞搞,直接枚举,暴力分解因子.再好一点,就打个素数表来分解因子.假设num=p1^a1p2^a2...pn^an,则所有因子个数为(a1+1)(a2+1)...(an+1). 再好 ...
- Highly divisible triangular number
我的那个暴力求解,太耗时间了. 用了网上产的什么因式分解,质因数之类的.确实快!还是数学基础不行,只能知道大约. The sequence of triangle numbers is generat ...
- projecteuler---->problem=12----Highly divisible triangular number
title: The sequence of triangle numbers is generated by adding the natural numbers. So the 7th trian ...
- Python练习题 040:Project Euler 012:有超过500个因子的三角形数
本题来自 Project Euler 第12题:https://projecteuler.net/problem=12 # Project Euler: Problem 12: Highly divi ...
- Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...
- Python练习题 048:Project Euler 021:10000以内所有亲和数之和
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 033:Project Euler 005:最小公倍数
本题来自 Project Euler 第5题:https://projecteuler.net/problem=5 # Project Euler: Problem 5: Smallest multi ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
随机推荐
- python导入matplotlib模块出错
我的系统是linux mint.用新立得软件包安装了numpy和matplotlib.在导入matplotlib.pyplot时出错.说是没有python3-tk包. 于是就在shell中装了一下. ...
- gridview动态生成列
// 有连接的列 if (!String.IsNullOrWhiteSpace(filedModel.C_SqlDetail)) { HyperLinkField hyperColumn = new ...
- Delphi中ShellExecute使用详解(详细解释10种显示状态)
有三个API函数可以运行可执行文件WinExec.ShellExecute和CreateProcess.1.CreateProcess因为使用复杂,比较少用.2.WinExec主要运行EXE文件.如: ...
- uva 10718 Bit Mask (位运算)
uva 10718 Bit Mask (位运算) Problem A Bit Mask Time Limit 1 Second In bit-wise expression, mask is a ...
- HDu 5433 Xiao Ming climbing (BFS)
题意:小明因为受到大魔王的诅咒,被困到了一座荒无人烟的山上并无法脱离.这座山很奇怪: 这座山的底面是矩形的,而且矩形的每一小块都有一个特定的坐标(x,y)和一个高度H. 为了逃离这座山,小明必须找到大 ...
- Java 安装配置
1.下载 进入官方网站,点击下载链接进入下载页面,选择合适的版本(如,jdk-6u31-windows-i586.exe)下载. 2.安装 双击jdk-6u31-windows-i586.exe文件, ...
- Poj3468-A Simple Problem with Integers(伸展树练练手)
Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...
- 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4164 Solved: 1888[Submit] ...
- jQuery autocomplete 使用
推荐 :http://www.cnblogs.com/Peter-Zhang/archive/2011/10/22/2221147.html eg: $("#txtGrand"). ...
- JUnit4中的测试套件
测试套件 JUnit3.8中,用测试套件同时运行多个测试类(http://www.cnblogs.com/mengdd/archive/2013/04/07/3006265.html). 在JUnit ...