The Basics

Fields

Fields are the most fundamental unit of construction: they parse (read data from the stream and return an object) and build (take an object and write it down onto a stream). There are many kinds of fields, each working with a different type of data (numeric, boolean, strings, etc.).

Some examples of parsing:

>>> from construct import UBInt16, ULInt16
>>> UBInt16("foo").parse("\x01\x02")
258
>>> ULInt16("foo").parse("\x01\x02")
513

Some examples of building:

>>> from construct import UBInt16, SBInt16
>>> UBInt16("foo").build(31337)
'zi'
>>> SBInt16("foo").build(-31337)
'\x86\x97'

Structs

For those of you familiar with C, Structs are very intuitive, but here’s a short explanation for the larger audience. A Struct is a sequenced collection of fields or other components, that are parsed/built in that order. Note that if two or more fields of a Struct have the same name, the last field “wins”; that is, the last field’s value will be the value returned from a parse.

>>> from construct import Struct, UBInt8, SLInt16, LFloat32
>>> c = Struct("foo",
... UBInt8("a"),
... SLInt16("b"),
... LFloat32("c"),
... )
>>> c
<Struct('foo')>
>>> c.parse("\x07\x00\x01\x00\x00\x00\x01")
Container(a = 7, b = 256, c = 2.350988701644575e-038)

Containers

What is that Container object, anyway? Well, a Container is a regular Python dictionary. It provides pretty-printing and accessing items as attributes, in addition to the normal facilities of dictionaries. Let’s see more of those:

>>> x = c.parse("\x07\x00\x01\x00\x00\x00\x01")
>>> x
Container(a = 7, b = 256, c = 2.350988701644575e-038)
>>> x.a
7
>>> x.b
256
>>> print x
Container:
a = 7
b = 256
c = 2.350988701644575e-038

Building

And here is how we build Structs:

>>> # Rebuild the parsed object.
>>> c.build(x)
'\x07\x00\x01\x00\x00\x00\x01'
>>> # Mutate the parsed object and build...
>>> x.b = 5000
>>> c.build(x)
'\x07\x88\x13\x00\x00\x00\x01'
>>> # ...Or, we can create a new container.
>>> c.build(Container(a = 9, b = 1234, c = 56.78))
'\t\xd2\x04\xb8\x1ecB'

Note

Building is fully duck-typed and can be done with any object.

>>> class Foo(object): pass
...
>>> f = Foo()
>>> f.a = 1
>>> f.b = 2
>>> f.c = 3
>>> c.build(f)
'\x01\x02\x00\x00\x00@@'

Nested

Structs can be nested. Structs can contain other Structs, as well as any construct. Here’s how it’s done:

>>> c = Struct("foo",
... UBInt8("a"),
... UBInt16("b"),
... Struct("bar",
... UBInt8("a"),
... UBInt16("b"),
... )
... )
>>> x = c.parse("ABBabb")
>>> x
Container(a = 65, b = 16962, bar = Container(a = 97, b = 25186))
>>> print x
Container:
a = 65
b = 16962
bar = Container:
a = 97
b = 25186
>>> x.a
65
>>> x.bar
Container(a = 97, b = 25186)
>>> x.bar.b
25186

As you can see, Containers provide human-readable representations of the data, which is very important for large data structures.

Embedding

A Struct can be embedded into an enclosing Struct. This means all the fields of the embedded Struct will be merged into the fields of the enclosing Struct. This is useful when you want to split a big Struct into multiple parts, and then combine them all into one Struct.

>>> foo = Struct("foo",
... UBInt8("a"),
... UBInt8("b"),
... )
>>> bar = Struct("bar",
... foo, # This Struct is not embedded.
... UBInt8("c"),
... UBInt8("d"),
... )
>>> bar2= Struct("bar",
... Embed(foo), # This Struct is embedded.
... UBInt8("c"),
... UBInt8("d"),
... )
>>> bar.parse("abcd")
Container(c = 99, d = 100, foo = Container(a = 97, b = 98))
>>> bar2.parse("abcd")
Container(a = 97, b = 98, c = 99, d = 100)

See also

The Embedded() macro.

Sequences

Sequences are very similar to Structs, but operate with lists rather than containers. Sequences are less commonly used than Structs, but are very handy in certain situations. Since a list is returned in place of an attribute container, the names of the sub-constructs are not important; two constructs with the same name will not override or replace each other.

Parsing

>>> c = Sequence("foo",
... UBInt8("a"),
... UBInt16("b"),
... )
>>> c
<Sequence('foo')>
>>> c.parse("abb")
[97, 25186]

Building

>>> c.build([1,2])
'\x01\x00\x02'

Nested

>>> c = Sequence("foo",
... UBInt8("a"),
... UBInt16("b"),
... Sequence("bar",
... UBInt8("a"),
... UBInt16("b"),
... )
... )
>>> c.parse("ABBabb")
[65, 16962, [97, 25186]]

Embedded

Like Structs, Sequences are compatible with the Embed wrapper. Embedding one Sequence into another causes a merge of the parsed lists of the two Sequences.

>>> foo = Sequence("foo",
... UBInt8("a"),
... UBInt8("b"),
... )
>>> bar = Sequence("bar",
... foo, # <-- unembedded
... UBInt8("c"),
... UBInt8("d"),
... )
>>> bar2 = Sequence("bar",
... Embed(foo), # <-- embedded
... UBInt8("c"),
... UBInt8("d"),
... )
>>> bar.parse("abcd")
[[97, 98], 99, 100]
>>> bar2.parse("abcd")
[97, 98, 99, 100]

Repeaters

Repeaters, as their name suggests, repeat a given unit for a specified number of times. At this point, we’ll only cover static repeaters. Meta-repeaters will be covered in the meta-constructs tutorial.

We have four kinds of static repeaters. In fact, for those of you who wish to go under the hood, two of these repeaters are actually wrappers around Range.

construct.Range(mincountmaxcoutsubcon)

A range-array. The subcon will iterate between mincount to maxcount times. If less than mincount elements are found, raises RangeError.

See also

The GreedyRange() and OptionalGreedyRange() macros.

The general-case repeater. Repeats the given unit for at least mincount times, and up to maxcount times. If an exception occurs (EOF, validation error), the repeater exits. If less than mincount units have been successfully parsed, a RangeError is raised.

Note

This object requires a seekable stream for parsing.

Parameters:
  • mincount – the minimal count
  • maxcount – the maximal count
  • subcon – the subcon to repeat

Example:

>>> c = Range(3, 7, UBInt8("foo"))
>>> c.parse("\x01\x02")
Traceback (most recent call last):
...
construct.core.RangeError: expected 3..7, found 2
>>> c.parse("\x01\x02\x03")
[1, 2, 3]
>>> c.parse("\x01\x02\x03\x04\x05\x06")
[1, 2, 3, 4, 5, 6]
>>> c.parse("\x01\x02\x03\x04\x05\x06\x07")
[1, 2, 3, 4, 5, 6, 7]
>>> c.parse("\x01\x02\x03\x04\x05\x06\x07\x08\x09")
[1, 2, 3, 4, 5, 6, 7]
>>> c.build([1,2])
Traceback (most recent call last):
...
construct.core.RangeError: expected 3..7, found 2
>>> c.build([1,2,3,4])
'\x01\x02\x03\x04'
>>> c.build([1,2,3,4,5,6,7,8])
Traceback (most recent call last):
...
construct.core.RangeError: expected 3..7, found 8
construct.Array(countsubcon)

Repeats the given unit a fixed number of times.

Parameters:
  • count – number of times to repeat
  • subcon – construct to repeat

Example:

>>> c = Array(4, UBInt8("foo"))
>>> c.parse("\x01\x02\x03\x04")
[1, 2, 3, 4]
>>> c.parse("\x01\x02\x03\x04\x05\x06")
[1, 2, 3, 4]
>>> c.build([5,6,7,8])
'\x05\x06\x07\x08'
>>> c.build([5,6,7,8,9])
Traceback (most recent call last):
...
construct.core.RangeError: expected 4..4, found 5
construct.GreedyRange(subcon)

Repeats the given unit one or more times.

Parameters: subcon – construct to repeat

Example:

>>> from construct import GreedyRange, UBInt8
>>> c = GreedyRange(UBInt8("foo"))
>>> c.parse("\x01")
[1]
>>> c.parse("\x01\x02\x03")
[1, 2, 3]
>>> c.parse("\x01\x02\x03\x04\x05\x06")
[1, 2, 3, 4, 5, 6]
>>> c.parse("")
Traceback (most recent call last):
...
construct.core.RangeError: expected 1..2147483647, found 0
>>> c.build([1,2])
'\x01\x02'
>>> c.build([])
Traceback (most recent call last):
...
construct.core.RangeError: expected 1..2147483647, found 0
construct.OptionalGreedyRange(subcon)

Repeats the given unit zero or more times. This repeater can’t fail, as it accepts lists of any length.

Parameters: subcon – construct to repeat

Example:

>>> from construct import OptionalGreedyRange, UBInt8
>>> c = OptionalGreedyRange(UBInt8("foo"))
>>> c.parse("")
[]
>>> c.parse("\x01\x02")
[1, 2]
>>> c.build([])
''
>>> c.build([1,2])
'\x01\x02'

Nesting

As with all constructs, Repeaters can be nested too. Here’s an example:

>>> c = Array(5, Array(2, UBInt8("foo")))
>>> c.parse("aabbccddee")
[[97, 97], [98, 98], [99, 99], [100, 100], [101, 101]]
 

python construct文档的更多相关文章

  1. 如何在命令行模式下查看Python帮助文档---dir、help、__doc__

    如何在命令行模式下查看Python帮助文档---dir.help.__doc__ 1.dir函数式可以查看对象的属性,使用方法很简单,举str类型为例,在Python命令窗口输入 dir(str) 即 ...

  2. python统计文档中词频

    python统计文档中词频的小程序 python版本2.7 效果如下: 程序如下,测试文件与完整程序在我的github中 #统计空格数与单词数 本函数只返回了空格数 需要的可以自己返回多个值 def ...

  3. 在命令行模式下查看Python帮助文档---dir、help、__doc__

    在命令行模式下查看Python帮助文档---dir.help.__doc__   1.dir函数式可以查看对象的属性,使用方法很简单,举str类型为例,在Python命令窗口输入 dir(str) 即 ...

  4. Python帮助文档中Iteration iterator iterable 的理解

    iteration这个单词,是循环,迭代的意思.也就是说,一次又一次地重复做某件事,叫做iteration.所以很多语言里面,循环的循环变量叫i,就是因为这个iteration. iteration指 ...

  5. 使用Python对文档单词进行计数

    做hacker.org上面的题目时,遇到了一个题目需要对RFC3280种长度为9的单词进行计数,并找出这些单词中出现次数最多的那个:Didactic Byte RFC3280文档有7000多行,靠人工 ...

  6. 三言两语聊Python模块–文档测试模块doctest

    doctest是属于测试模块里的一种,对注释文档里的示例进行检测. 给出一个例子: splitter.pydef split(line, types=None, delimiter=None): &q ...

  7. python 本地文档查看

    本地安装Python文档本地查看,在命令行中运行: python -m pydoc -p 1234 在浏览器中访问如下链接,就可以访问到本地文档: http://localhost:1234/ 本地文 ...

  8. 使用Sphinx生成本地的Python帮助文档

    第一步:安装Sphinx 首先我们需要安装Sphinx,如果已经安装了Anaconda,那么只需要使用如下命令即可安装,关于其中的参数 -c anaconda,可以在链接[1]中查看: conda i ...

  9. Python asyncio文档阅读摘要

    文档地址:https://docs.python.org/3/library/asyncio.html 文档第一句话说得很明白,asyncio是单线程并发,这种event loop架构是很多新型异步并 ...

随机推荐

  1. Oracle 序列(sequence)

    序列是Oracle特有的,他可以维护一个自增的数字序列,通常从1开始增长,但可以设置. (1)创建序列: increment (2)使用序列: insert into student(sno,name ...

  2. java中enum类型的使用

    java 枚举类型enum 的使用 最近跟同事讨论问题的时候,突然同事提到我们为什么java 中定义的常量值不采用enmu 枚举类型,而采用public final static 类型来定义呢?以前我 ...

  3. C51 库函数

    C-51软件包的库包含标准的应用程序,每个函数都在相应的头文件(.h)中有原型声明.如果使用库函数,必须在源程序中用预编译指令定义与该函数相关的头文件(包含了该函数的原型声明).例如:#include ...

  4. ruby文档

    http://www.ruby-doc.org/http://rubyonrails.org/https://www.ruby-lang.org/zh_cn/downloads/http://ruby ...

  5. android调用系统自带的的浏览器搜索关键字

    //调用系统的浏览器搜索详情 public void jumpBrowser(String value) { /* 取得网页搜寻的intent */ Intent search = new Inten ...

  6. Java实现生命周期管理机制

    先扯再说 最近一直在研究某个国产开源的MySQL数据库中间件,拉下其最新版的代码到eclipse后,启动起来,然后做各种测试和代码追踪:用完想要关闭它时,拉出它的STOP类想要运行时,发现这个类里赫然 ...

  7. Storm实现单词计数

    package com.mengyao.storm; import java.io.File; import java.io.IOException; import java.util.Collect ...

  8. XSHELL使用技巧总结

    1. 配置鼠标右键直接黏贴,选中直接复制(和putty行为一致) 工具->选项->键盘和鼠标,向右按钮 2. 如何在不同的选项卡切换 查看->会话选项卡

  9. POJ 1386 有向图欧拉通路

    题意:给你一些字符串,这些字符串可以首位相接(末位置如果和另一个字符串的首位置相同的话就可以相连) .然后问你是否可以全部连起来. 思路:就是取出每个字符串的首尾位置,然后求出出度和入度,根据有向欧拉 ...

  10. Tree( 树) 组件[2]

    本节课重点了解 EasyUI 中 Tree(树)组件的使用方法, 这个组件依赖于 Draggable(拖动)和 Droppable(放置)组件.一. 异步加载如果想从数据库里获取导航内容, 那么就必须 ...