揭秘In-Context Learning(ICL):大型语言模型如何通过上下文学习实现少样本高效推理[示例设计、ICL机制详解]

自GPT-3首次提出了In-Context Learning(ICL)的概念而来,ICL目前已经变成了一种经典的LLMs使用方法。ICL,即In-Context Learning,是一种让大型语言模型(LLMs)通过少量标注样本在特定任务上进行学习的方法。这种方法的核心思想是,通过设计任务相关的指令形成提示模板,利用少量标注样本作为提示,引导模型在新的测试数据上生成预测结果。

  • ICL主要思路是:给出少量的标注样本,设计任务相关的指令形成提示模板,用于指导待测试样本生成相应的结果。

  • ICL的过程:并不涉及到梯度的更新,因为整个过程不属于fine-tuning范畴。而是将一些带有标签的样本拼接起来,作为prompt的一部分,引导模型在新的测试数据输入上生成预测结果。

  • ICL方法:表现大幅度超越了Zero-Shot-Learning,为少样本学习提供了新的研究思路。

1.ICL定义

1.1 形式化定义

给出少量任务相关的模型输入输出示例(demonstration),如$k$个示例$D_k={f(x_1,y_1),...,f(x_k,y_k)}$,其中$f(x_k,y_k)$是一个预定义的关于Prompt的函数(文本格式),用于将$k$个任务相关的示例,转换成自然语言Prompt。

给出任务定义$I$,示例$D_k$,以及一个新的输入$x_{k+1}$,我们的目的是通过LLM生成输出$\hat{y}_k+1$。公式化为:

1.2 实例理解

以一个分类任务进行举例,从训练集中抽取了$k=3$个包含输入输出的实例,使用换行符"\n"来区分输入和输出。

在预测时,可以更换测试样本输入(绿色部分),并在末尾留出空间让LLM生成。

2.示例设计(Demonstration Design)

2.1 示例选择

ICL的性能,在不同的示例中,会有很大差异。即同一个测试样本,在选择不同的示例下,得到的结果可能会不一样。为了使得LLM生成更高准确率的结果,我们需要选取合适的示例。目前有两类方法:

(1) 启发式方法

《What Makes Good In-Context Examples for GPT-3?

我们很容易能有这样一个想法:如果demonstration与测试样本输入在语义上相近的话,是否效果会更好?本论文给出了肯定的答案。

作者使用RoBERTa-large模型作作为编码器,选取了其CLS embedding的输出向量作为训练样本的文本表征。使用K-近邻算法以及欧式距离方法,选取与当前test sentence语义最近的10个训练个样本,作为demonstration。

实验效果表明,该方法比随机抽取训练样本作为demonstration效果更好。

《Diverse demonstrations improve in-context compositional generalization》

用来挑选demostration的训练数据和测试数据有时候可能会存在较大的分布差异,这个时候很难通过KNN等基于相似方法来挑选合适的demostration。本论文从多样性的角度去挑选demostration,目的在于尽可能地覆盖所有可能的输出,提高模型在新场景的泛化能力。

具体做法是,在原有相似度的基础上,考虑不同demostration之间的差异性。当两个demostration高度语义相似时,剔除其中一个。

(2) LLM-based方法

除了启发式方法以外,还有研究者使用LLMs来直接生成demostrations。

《Learning To Retrieve Prompts for In-Context Learning》

作者认为demostrations的好坏,不应该由人来决定,而应该由模型来判定。

对于一条测试数据$(x,y)$,作者将训练集中每一个样本数据都当作示例$e$,将$(e,x)$输入模型,通过模型生成$y$的概率$Prob_{\hat g}(y|e,x)$,来评估当前示例的好坏。

为了缓解由于训练集过大而导致计算开销成本高的问题。作者使用了$BM25$、$SBERT$等方法,预先对所有训练集进行召回,筛选出候选示例集。再对其每一条示例进行评估,选取最高分的k条示例作为正例集,最低分k条作为负例集,使用对比学习的方法,训练retrever。同时生成一个针对输入编码的Utterance encoder和针对示例编码的prompt encoder。

基于训练好的retrever,结合Faiss相似度计算框架,找出输入input对应最佳的demostrations。

《Active Example Selection for In-Context Learning》

我们知道,主动学习的思路是从样本库中选择适合的样本,提供给标注者标注。

而示例选择问题与主动学习的思路有点类似,示例选择目标是选择适合的示例,提供给prompt,以使测试样本得到较高的准确率。

由于demostrations的可选空间,与样本库(一般是训练集)呈指数关系,要枚举所有的demostrations组合,并不现实。因此,作者将示例选择看作是一个序列决策问题,这样就可以基于马尔可夫决策过程(MDP),使用强化学习(RL)的方法去解决。

我们知道一个经典的MDP模型,有3个基本定义(状态state、动作action、奖励reward)。文章将state定义为当前时刻的demostration,即$(x_i,y_i)$,action定义为样本库中所有的样本和一个停止信号标识(┴),reward定义为LLMs利用state与当前action构成的demostrations,在验证集中的准确率。即,prompt是由state+action构造成的demostrations,加上验证集中的样本输入一起组成。通过对比验证集标签与LLMs输出,可计算准确率。

定义好MDP的各个关键部分后,作者基于off-policy的方式,使用CQL(Q-learning的一个变种,用于缓解Q-Learning对于Q值估计过高的问题),构造一个三层MLP层的Q网络,用于学习最优策略。

《Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator》

前面提及的方法,都是从样本库中挑选出合适的demonstration,而本论文方法是利用LLMs自身的能力,生成合适的demonstration。目的是最小化对外部样本库的依赖。

整个过程分为两个阶段:

  • 1.借助预先设计的prompt,让LLMs生成k个合适的示例
  • 2.在原来输入的基础上,加入第一阶段生成的示例,让LLMs预测最终结果

实验结显示,当使用Self-generated的方式生成8个demonstration作为in-context sample,于从样本库中抽取5个demonstration作为in-context sample的效果相当。

2.2 示例格式

在完成demonstrations的选择后,下一步就是将demonstrations整合成一个自然语言Prompt。

《Cross-task generalization via natural language crowdsourcing instructions》

这篇论文提出了一个新的跨任务instruction数据集。他们使用总包的方式,按照规定的instruction格式,对多个开源数据集进行改造。

针对每一个promt,其格式包含:

  • title: 包含一个high-level的任务描述,以及其相关技能,如question generation,answer generation等
  • prompt: 单独的文本命令,一般出现在输入示例之前。
  • definition: 指令的补充内容,更加详细地描述指令的具体执行细节。
  • things to avoid: 包含模型应该避免的内容,或规则。
  • emphasis and caution: 强调在众包过程中,警告或反对的内容
  • positive examples: 提供一个类似系统期望的输入、输出例子,使得众包人员更好地理解任务。
  • negative examples:提供一个类似系统期望的输入、输出的负例,让众包人员尽量避免。
  • reason: 解释为什么例子是positive或negative。
  • suggestion: 包含一些建议,主要用于指导如何将负例改成正例。

模型在经过上述instruction数据集微调后,能在unseen样本上,达到较好的生成效果。在新样本推断时,将demonstrations加入到task instances即可。

《SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions》

本论文提出了一种半自动化self-instruction过程,使用少量人工标注的数据,生成大量能用于instruction的数据。并开源了一个基于GPT3的52K self-instruct数据集。

一般来说,instruction数据集,会包含两/三个部分:(指令、输入、输出)或(指令、输出)。如

本论文提出的方法包含几个步骤:

1.人工设计175个不同任务的启动任务池,且给每个任务编写一个instruction和一个实例。

2.使用LLMs生成新的指令。生成指令的prompt由6个人工编写的instruction和从模型生成结果中抽取2个instruction,按照指定模板公式组合后,输入模型,并输出一个新的指令

3.判断指令是否属于分类任务。由于分类任务和非分类任务用的prompt模板不同,故需要进行分开识别。分别从任务池中抽取分类instruction和非分类instruction,再加上新生成的指令,输入模型,模型输出是否为分类任务

4.生成实例。分为两种策略:

  • (1)先生成输入,在生成输出。适用于非分类任务。
  • (2)先生成输出,再生成输入。适用于分类任务,缓解生成结果单一化问题。

5.结果过滤。对于新生成的instruction,比较其与任务池中的instruction的ROUGE-L值,当小于0.7时才会加入任务池。(ROUGE-L越大,说明instruction越相似)

《Automatic chain of thought prompting in large language models》

LLMs通过生成中间推理步骤的方式可以做复杂任务推理。在prompt示例(demonstration)中引入这些推理步骤的方法称为chain-of-thought(CoT) prompting,即:思维链prompting。

传统的CoT分为两种范式:

1.Zero-Shot-CoT: 在LLMs中添加一个简单的prompt即可,如"Let's think step by step"。以促进在回答问题之前一步步地思考。

2.Manual-CoT: 加入多个由人工设计的prompt,包含问题、推理链和答案。

由于Zero-Shot-CoT方法存在不稳定性,而Manual-Cot方法需要大量人工成本投入。作者提出了一种基于Auto-CoT的方法,自动构建包含问题和推理链的说明样例(demonstrations)。

整个过程分了两个阶段:

1.question cluster: 目的是将数据集中的question划分到不同簇中。

  • 使用Sentence-Bert计算每个question的向量表示;
  • 使用k-means方法将question记性簇划分;
  • 最后对每个簇中的question,根据距离中心点距离,升序排序。

2.demostration sampling: 目的是从每个簇中选取一个代表性的question,基于LLMs,使用Zero-Shot-CoT生成推理链。

  • 对于每一个簇$i$里的每一个问题$q{(i)}_j$,使用Zero-Shot-CoT的方法,将$[Q:q_j,A:[P]]$(其中$[P]$表示"Let's think step by step")输入到LLMs,LLMs生成该问题的推理链$r{(i)}_j$和答案$a_j$;

  • 若问题$q{(i)}_j$不超过60个tokens,且推理链$r_j$不超过5个推理步骤,则将问题+推理链+答案,加入到demostrations列表中:$[Q:q{(i)}_j,A:r_j。a^{(i)}_j]$;

  • 遍历完所有簇,将得到k个demostrations,将其拼接上测试question,构造成新的Prompt,输入LLMs便可得到生成结果。

值得一提的是,Auto-CoT在多个开源推理任务的数据集上,效果与Manual-CoT相当,甚至某些任务表现得更好。

《Least-to-Most Prompting Enables Complex Reasoning in Large Language Models》

虽然CoT在很多自然语言推理任务上效果显著,但是当问题比prompt里的demostrations更难时,LLMs的表现往往会很糟糕。于是作者提出了Least-to-Most Prompting的策略思想,将问题分解成一个个小问题,结合使用COT,那么模型就能把问题解出来了。

整个过程分为两个阶段:

1.将原问题分解为一系列子问题。

  • 要求LLMs根据输入和提示"To solve xx, we need to solve xx",生成子问题。

2.依次解决子问题,最后解决原始问题。

  • 将原始context,加上阶段1中生成的子问题进行组合,通过LLMs依次生成每个子问题的思维链和答案。
  • 当生成完所有子问题的答案后,再拼接上原始问题,通过LLMs输出生成结果。

2.3 示例排序

我们知道,demostrations一般是由多个示例组成,而不同的示例排序会不会对模型在新样本中的表现产生影响?

论文《Calibrate before use: Improving few-shot performance of language models》给出了肯定的答案。作者指出,在一个正常的prompt+demostrations+新样本的输入中,LLMs会更加倾向于将新样本对应的标签,预测为demostrations最后一个示例对应的标签,成为Recency Bias。因此demostrations的排序,对LLMs的表现也是有相当大的影响。

2.3.1 启发式方法

《What Makes Good In-Context Examples for GPT-3?》

我们在选择那一节有介绍过该论文,思路是使用k-nearest neighbors+欧式距离的方法,根据与测试样本的相似度,对demostrations进行排序,与测试样本越相似,排序越后。

2.3.2 基于熵的方法

《Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity》

作者提出了一种基于Global Entropy和Loacl Entropy的方法对demostrations进行排序,取得了比随机排序更优的效果。

该过程分为两个步骤:

1.生成用来验证的无标注数据集。

  • 将demostrations按照不同的顺序排列,输入LLMs,让其生成不同带标签的伪数据。

2.确定评价指标来评估demostrations的展示顺序优劣。

  • 作者观察到大多数使模型失效的demostrations顺序,会让模型的标签分布相对极端,从而导致标签分布的熵值较低。
  • 设计了两种基于熵的指标(Global Entropy和Loacl Entropy),来评估当前demostrations排序的结果质量。

3.ICL机制

3.1 预训练机制如何影响ICL?

  1. 知识积累:预训练阶段,模型会接触到大量的无标注或弱标注数据,从而学习到丰富的语言知识、常识和上下文信息。这些积累的知识和信息为ICL提供了坚实的基础,使得模型能够利用上下文信息做出更准确的预测。
  2. 泛化能力:预训练过程使模型具备了较强的泛化能力,即模型能够将在预训练阶段学到的知识和技能应用到新的、未见过的任务和数据上。这种泛化能力是ICL得以实现的关键,因为ICL正是利用了模型在预训练阶段学到的知识来进行少量样本学习。
  3. 参数初始化:预训练为模型的参数提供了良好的初始化值。在ICL过程中,模型不需要对参数进行大量的更新,而只需要根据少量标注样本进行微调,即可快速适应新的任务。这种快速的适应能力是ICL的一个重要优势。

3.2 LLMs怎样表现出ICL能力?

  1. 利用上下文信息:LLMs能够充分利用输入序列中的上下文信息来做出决策。例如,在文本分类任务中,模型可以通过分析整个句子的语境来判断句子的情感倾向。
  2. 设计提示模板:对于特定的任务,LLMs可以通过设计任务相关的指令形成提示模板。这些提示模板可以包含少量标注样本,用于指导模型生成预测结果。
  3. 少样本学习:LLMs在只有少量标注数据可用时仍能表现出良好的性能。通过利用预训练阶段学到的知识和泛化能力,模型可以在少量样本上快速学习并适应新的任务。
  4. 性能提升:实验表明,ICL方法的表现大幅度超越了Zero-Shot-Learning,为少样本学习提供了新的研究思路。在多个自然语言处理任务上,采用ICL方法的LLMs相比传统的微调方法取得了更好的性能。

4.总结

对于In-Context Learning而言,demonstrations的选择、格式、以及排序,都会对测试样本的效果产生影响。在实际应用时,我们可以借鉴前人的经验,根据自己的场景选择适合的ICL方法。

5.Reference

What Makes Good In-Context Examples for GPT-3?

Diverse demonstrations improve in-context compositional generalization

Learning To Retrieve Prompts for In-Context Learning

Active Example Selection for In-Context Learning

Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator

Cross-task generalization via natural language crowdsourcing instructions

SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions

Automatic chain of thought prompting in large language models

Least-to-Most Prompting Enables Complex Reasoning in Large Language Models

Calibrate before use: Improving few-shot performance of language models

Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity

揭秘In-Context Learning(ICL):大型语言模型如何通过上下文学习实现少样本高效推理[示例设计、ICL机制详解]的更多相关文章

  1. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  2. GPT-NER:通过大型语言模型的命名实体识别

    讲在前面,chatgpt出来的时候就想过将其利用在信息抽取方面,后续也发现了不少基于这种大语言模型的信息抽取的论文,比如之前收集过的: https://github.com/cocacola-lab/ ...

  3. [转]C#综合揭秘——Entity Framework 并发处理详解

    本文转自:http://www.cnblogs.com/leslies2/archive/2012/07/30/2608784.html 引言 在软件开发过程中,并发控制是确保及时纠正由并发操作导致的 ...

  4. 块级格式化上下文(block formatting context)、浮动和绝对定位的工作原理详解

    CSS的可视化格式模型中具有一个非常重要地位的概念——定位方案.定位方案用以控制元素的布局,在CSS2.1中,有三种定位方案——普通流.浮动和绝对定位: 普通流:元素按照先后位置自上而下布局,inli ...

  5. Android中Context详解 ---- 你所不知道的Context

    转自:http://blog.csdn.net/qinjuning/article/details/7310620Android中Context详解 ---- 你所不知道的Context 大家好,  ...

  6. Spark Streaming揭秘 Day28 在集成开发环境中详解Spark Streaming的运行日志内幕

    Spark Streaming揭秘 Day28 在集成开发环境中详解Spark Streaming的运行日志内幕 今天会逐行解析一下SparkStreaming运行的日志,运行的是WordCountO ...

  7. Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解

    Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解 今天主要理一下StreamingContext的启动过程,其中最为重要的就是Jo ...

  8. Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习

    http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...

  9. 减少HTTP请求之合并图片详解(大型网站优化技术)

    原文:减少HTTP请求之合并图片详解(大型网站优化技术) 一.相关知识讲解 看过雅虎的前端优化35条建议,都知道优化前端是有多么重要.页面的加载速度直接影响到用户的体验.80%的终端用户响应时间都花在 ...

  10. Learning Cocos2d-x for WP8(5)——详解Menu菜单

    原文:Learning Cocos2d-x for WP8(5)--详解Menu菜单 C#(wp7)兄弟篇Learning Cocos2d-x for XNA(5)——详解Menu菜单 菜单是游戏必不 ...

随机推荐

  1. 21.3K star!推荐一款可视化自动化测试/爬虫/数据采集神器!功能免费且强大!

    大家好,我是狂师! 在大数据时代,信息的获取与分析变得尤为重要.对于开发者.数据分析师乃至非技术人员来说,能够高效地采集网络数据并进行分析是一个强有力的工具.今天,我要向大家推荐的是一款功能强大.操作 ...

  2. dotnet win32 使用 WIC 获取系统编解码器

    在 Windows 系统上,有一个很重要的概念是 Windows Imaging Component 也就是 WIC 层,这是专门用来处理多媒体相关的系统组件,特别是用来处理图片相关,包括编码和解码和 ...

  3. Fiddler 将插件放在独立子文件夹

    我的 Fiddler 安装了许多插件,有一些插件存在 DLL 名冲突问题,比如多个不同的插件都存在名为 PluginCore.dll 但实际实现逻辑完全不相同的程序集.这就导致了多个插件的安装之间,如 ...

  4. 第一章 Jenkins安装配置

    Jenkins官网 # 官网: https://www.jenkins.iohttps://www.jenkins.io/zh/ # docker安装: https://www.jenkins.io/ ...

  5. MySQL—MySQL的存储引擎之InnoDB

    MySQL-MySQL的存储引擎之InnoDB 存储引擎及种类 存储引擎 说明 MyISAM 高速引擎,拥有较高的插入,查询速度,但不支持事务 InnoDB 5.5版本后MySQL的默认数据库存储引擎 ...

  6. 升级版header吸顶后滑动变色(二)

    <van-nav-bar fixed id="opacityHeader"      //拉伸状态显示的header         title="赛事" ...

  7. Java设计模式-观察者模式-SpringBoot实现

    观察者模式 项目:https://gitee.com/KakarottoChen/blog-code.git 的:JavaSpringListener 一.Java观察者模式 Java观察者模式是一种 ...

  8. DB2查找最耗时SQL

    两种方法:db2top和snapshot for dynamic sql 1. db2top -d <dbname>

  9. DNS(5) -- 主从dns

    目录 1. DNS主从服务器 1.1 主从服务器概述 1.2 主从DNS实现 1.2.1 主从DNS实现要点 1.2.2 主DNS服务器配置 1.2.3 从DNS服务器配置 1.2.4 测试主从同步 ...

  10. 节能降耗 | AIRIOT智慧电力综合管理解决方案

      电力技术的发展推动各行各业的生产力,与此同时,企业中高能耗设备的应用以及输配电过程中的电能损耗,也在一定程度上加剧了电能供应压力.以工业制造业为例,企业的管理水平.能耗结构.生产组织方式都关系到能 ...