[ABC309G] Ban Permutation
Problem Statement
Find the number, modulo $998244353$, of permutations $P=(P_1,P_2,\dots,P_N)$ of $(1,2,\dots,N)$ such that:
- $|P_i - i| \ge X$ for all integers $i$ with $1 \le i \le N$.
Constraints
- $1 \le N \le 100$
- $1 \le X \le 5$
- All input values are integers.
$X\le 5$,考虑状压。
但是 \(p_i-i\ge X\) ? 考虑容斥。
定义 \(dp_{i,j,s}\) 为目前选的集合为 \(s\),选到第 \(i\) 个数,目前有 \(j\) 个不满足要求。
考虑这个是否满足要求,如果不满足,那么记到状压里面,否则就先放着不管
在最后统计答案的时候, \(dp_{n,j,s}\) 中还有 \(n-j\) 个数没有安排好,乘以个 \((n-j)!\),同时这是一个二项式反演一样的容斥,所以乘上系数 \(C_{n,j}\times (-1)^j\)
#include<bits/stdc++.h>
using namespace std;
const int N=105,S=1025,P=998244353;
int dp[N][S][N],n,m,x,ans,f[N];
int main()
{
scanf("%d%d",&n,&x),--x;
m=x<<1|1;
dp[0][0][0]=1;
for(int i=f[0]=1;i<N;i++)
f[i]=1LL*f[i-1]*i%P;
for(int i=1;i<=n;i++)
{
for(int s=0;s<(1<<m);s++)
{
for(int j=0;j<=i;j++)
{
if(!(s>>(m-1)&1))
dp[i][s][j]=(dp[i-1][s<<1|1][j]+dp[i-1][s<<1][j])%P;
if(j)
{
for(int l=max(1-i,-x);l<=min(x,n-i);l++)
{
if(!(s>>l+x&1))
continue;
int ps=s^(1<<l+x);
if(!(ps>>(m-1)&1))
(dp[i][s][j]+=(dp[i-1][ps<<1|1][j-1]+dp[i-1][ps<<1][j-1])%P)%=P;
}
}
}
}
}
for(int i=0;i<(1<<m);i++)
for(int j=0;j<=n;j++)
(ans+=(j&1? P-1LL:1LL)*dp[n][i][j]%P*f[n-j]%P)%=P;
printf("%d",ans);
return 0;
}
[ABC309G] Ban Permutation的更多相关文章
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Palindrome Permutation 回文全排列
Given a string, determine if a permutation of the string could form a palindrome. For example," ...
- [LeetCode] Permutation Sequence 序列排序
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Next Permutation 下一个排列
Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...
- Leetcode 60. Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- UVA11525 Permutation[康托展开 树状数组求第k小值]
UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...
- Permutation test: p, CI, CI of P 置换检验相关统计量的计算
For research purpose, I've read a lot materials on permutation test issue. Here is a summary. Should ...
- Permutation
(M) Permutations (M) Permutations II (M) Permutation Sequence (M) Palindrome Permutation II
- Next Permutation
Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...
随机推荐
- 如何对MongoDB进行测试
一.环境搭建 关于环境搭建,最好的搭建方式,当然是脚本一键式搭建 我这里是centos6 x64版本的linux上进行构建,这个linux版本现在应该是大部分的主流服务器的标配版本 下面是安装脚本的编 ...
- 提取protobuf定义文件结构
先安装protobuf的js支持包 npm install protobufjs test.proto文件如下所示 syntax = "proto3"; package Test; ...
- KRPano动态热点专用素材图50多个,加动态热点使用方法
KRPano动态热点专用素材是一种特定形式的序列图,该序列图要求帧的水平和垂直的具体位置必须准确,否则图的动作将会出现错乱,KRPano不支持动态图.目前网上比较匮乏动态热点素材,在此亲手整理制作了5 ...
- Lua5.3 笔记
Lua5.3 笔记 最近用skynet,sproto通讯,完全看不懂通讯二进制是怎么写的,发现都是string这个,string那个,完全理解不来. 于是查了一下string.pack的api,和之前 ...
- 四千行代码写的桌面操作系统GrapeOS完整代码开源了
简介 学习操作系统原理最好的方法是自己写一个简单的操作系统. GrapeOS是一个非常简单的x86多任务桌面操作系统,源代码只有四千行,非常适合用来学习操作系统原理. 源码地址:https://git ...
- @RequiredArgsConstructor和@Authwired
我们在java后端书写接口时,对service层成员变量的注入和使用有以下两种实现方式: 1) @RequiredArgsConstructor import lombok.RequiredArgsC ...
- selenium库浅析
selenium库浅析 基于4.3 pip install selenium安装好后,在sitepackages下 2个主要的目录,common和webdriver 1- common 该目录一共就一 ...
- Informix 4gl错误代码信息和更正
(一)Informix信息和更正 出版日期:6 1996 年 年 1 11 月 0 成功. 操作成功.当 SQL 语句成功地执行时,数据库服务器把这个 SQLCODE 值返回给应用程序. 100 没有 ...
- NW排错
fist date VM备份失败时: NW server上(linux): > nsradmin >p type : nsr recover > cd /nsr/logs >n ...
- Nginx惊群现象的两种解决办法
惊群现象: 惊群现象是指由多个worker进程监听同一个Socket事件时,当事件发生时,相关的所有进程被惊醒,但最终只能有一个进程对该事件进行处理,其他进程会重新休眠,从而导致系统资源的浪费和系统性 ...