面向B端算法实时业务支撑的工程实践
简介:在营销场景下,算法同学会对广告主提供个性化的营销工具,帮助广告主更好的精细化营销,在可控成本内实现更好的ROI提升。我们在这一段时间支持了多个实时业务场景,比如出价策略的实时化预估、关键词批量服务同步、实时特征等场景,了解到业务侧同学来说,针对ODPS场景来说大部分可以灵活使用,但对于Blink使用还有不足,我们这里针对场景积累了一些经验,希望对大家有一些帮助。
作者 | 茂道
来源 | 阿里技术公众号
一 背景
在营销场景下,算法同学会对广告主提供个性化的营销工具,帮助广告主更好的精细化营销,在可控成本内实现更好的ROI提升。我们在这一段时间支持了多个实时业务场景,比如出价策略的实时化预估、关键词批量服务同步、实时特征等场景,了解到业务侧同学来说,针对ODPS场景来说大部分可以灵活使用,但对于Blink使用还有不足,我们这里针对场景积累了一些经验,希望对大家有一些帮助。
二 技术选型
为什么要选择Blink?大部分离线场景如果对于时效性没有要求,或者数据源是Batch模式的,非Streaming的(比如TT、SLS、SWIFT、顺序)等,这个场景的话选择ODPS就比较不错;总体来说,数据源是实时的(如TT/SLS/SWIFT)、需要顺序读取ODPS、对时效性要求高的场景,选择Blink是比较好的。
Blink目前也是支持Batch模式和Steaming模式。Batch模式是指有固定的起始时间和结束时间, 相比ODPS而来,他最大的优势是提前申请资源,可是独占的,这样可以保障时效性;Streaming模式就是传统意义上的实时消费,可实现毫秒级的处理。
从开发模式上看,主要分为Data Stream模式,类似于ODPS MR;第二种是SQL模式;从易用性角度看,SQL无疑是使用成本最低的;但对于复杂场景,Data Stream的掌控能力也是最好的,可灵活定义各类cache和数据结构,以及同时支持多类场景。
三 主要场景
1 实时replay出价策略评估
业务背景
Replay系统是一套集线上竞价日志搜集、结构化、后续处理的模拟系统。该系统记录了直通车线上引擎在召回之后的竞价信息,主要涵盖了线上的召回、出价、打分等队列信息。结合排序以及扣费公式,可以利用该日志实现对线上竞价环境的模拟。简单来说,就是可以评估bidword上如果当时采用其他的出价,会带来什么样的结果。通过replay系统,算法团队和广告主可以在线上AB测试之前,利用离线流量预估用户策略修改之后带来的效果,这样可以尽可能地减少策略的修改带给线上的影响,让结果变得更加可控。同时在进行负向策略测试的过程中,可以尽可能地减少对大盘的收益影响。
算法团队希望基于在线精排召回日志实现业务侧多种出价策略评估,回放1天内采样日志(10亿数据),在出价策略上评估,并支持ad的实时下线,避免下线ad对出价策略有影响,并且预期希望10亿数据量在1-2个小时内跑完。
主要挑战
- 1千万物料数据如何加载;
- 高qps(100万)下线ad的实时同步;
- 业务侧解耦,整个实时job链路如何实现和业务解耦
解决方案
- 物料数据加载:直接在blink启动时加载所有数据,避免高qps情况下,对igraph访问造成压力;另外采用广播模式,仅一次加载,每个节点都可以使用,避免多次加载odps数据;
- 下线的ad信息采用分桶的方式存入到IGraph中,并周期性cache方式全量读取全量下线ad,将查询的200W+qps控制在1w左右,并使用RateLimit限流组件控制访问并发,把IGraph并发控制限制在40万左右,实现整体流量平滑;
- 整体实时工程框架,预留UDF接口,让业务侧仅实现SDK即可,其他工程性能、并发、限流、埋点等逻辑内部实现即可,支持工程框架和算法策略Replay解耦。
总结
基于此业务需求,我们基于blink streaming Batch模式的灵活能力,实现了对tt数据固定开始和结束时间的数据处理。沉淀了读写tt组件 ,ODPS组件,iGraph组件和埋点组件 ,这些沉淀的组件很好地支持了后续相似业务的作业开发,同时组件作为之后作业产品化提供了基础能力。
2 实时特征
业务背景
随着B端算法发展,模型升级带来的增量红利越来越少,需要考虑从客户实时信息方面进一步捕捉用户意图,更全面、更实时的挖掘潜在需求,从B端视角进一步提升增长空间,基于线上用户行为日志产出用户行为实时特征,算法团队使用实时数据改进线上模型。
基于此需求我们产出一条用户实时特征产出链路,通过解析上游A+数据源获取用户实时特征,实时特征主要包含以下几种:
- 获取用户近50条特征数据值,并产出到igraph中。
- 输出具有某种特征的用户id,并按照分钟时间聚合
- 输出某种特征近1小时的和、均值或者数目
主要挑战
- 实时特征数据开发数量非常多,对于每个特征数据都需要开发实时数据链路、维护,开发成本、运维成本较高,重复造轮子;
特征数据开发要求开发者了解:
- 数据源头,会基于事实数据源进行ETL处理;
- 计算引擎,flink sql维护了一套自己的计算语义,需要学习了解并根据场景熟练使用;
- 存储引擎,实时数据开发好需要落地才能服务,故需要关系存储引擎选型,例如igraph、hbase、hologres等;
- 查询优化方法,不同存储引擎都有自己的查询客户端、使用及优化方法,故要学习不同引擎使用方法。
解决方案
从产品设计角度,设计一套实时平台能力,让开发实时特征跟在odps开发离线表一样简单。产品优势是让用户只需要懂SQL就可以开发实时特征:
- 不需要了解实时数据源
- 不需要了解底层存储引擎
- 只用sql就可以查询实时特征数据,不需要学习不同引擎查询方法
整个实时开发产品联动极光平台、dolphin引擎、blink引擎和存储引擎,把整个流程串联打通,给用户提供端到端的开发体验,无需感知跟自己工作无关的技术细节。
相关平台介绍:
Dolphin智能加速分析引擎:Dolphin智能加速分析引擎源自阿里妈妈数据营销平台达摩盘(DMP)场景,在通用OLAP MPP计算框架的基础上,针对营销场景的典型计算(标签圈人,洞察分析)等,进行了大量存储、索引和计算算子级别的性能优化,实现了在计算性能,存储成本,稳定性等各个方面的大幅度的提升。Dolphin本身定位是加速引擎,数据存储和计算算子依赖于底层的odps, hologres等引擎。通过插件形式,在hologres中,完成了算子集成和底层数据存储和索引的优化,实现了特定计算场景计算性能和支撑业务规模的数量级的提升。目前Dolphin的核心计算能力主要包括:基数计算内核,近似计算内核,向量计算内核,SQL结果物化及跨DB访问等。Dolphin同时实现了一套SQL转译和优化能力,自动将原始用户输入SQL,转化成底层优化的存储格式和计算算子。用户使用,不需要关心底层数据存储和计算模式,只需要按照原始数据表拼写SQL,极大的提升了用户使用的便利性。
极光消费者运营平台:极光是面向营销加速场景的一站式研发平台,通过平台产品化的方式,可以让特色引擎能力更好赋能用户。极光支持的特色场景包含超大规模标签交并差(百亿级标签圈选毫秒级产出)、人群洞察(上千亿规模秒级查询)、秒级效果归因(事件分析、归因分析)、实时和百万级人群定向等能力。极光在营销数据引擎的基础上提供了一站式的运维管控、数据治理以及自助接入等能力,让用户使用更加便捷;极光沉淀了搜推广常用的数据引擎模板,包含基数计算模板、报表模板、归因模板、人群洞察模板、向量计算模板、近似计算模板、实时投放模板等,基于成熟的业务模板,让用户可以零成本、无代码的使用。
根据目前的业务需求,封装了实时数据源和存储数据源
使用举例:
--- 注册输入表
create table if not exists source_table_name(
user_id String comment '',
click String comment '',
item_id String comment '',
behavior_time String comment ''
) with (
bizType='tt',
topic='topic',
pk='user_id',
timeColumn='behavior_time'
);
---- 创建输出表
create table if not exists output_table_name (
user_id STRING
click STRING
) with (
bizType='feature',
pk='user_id'
);
实现实时特征算子:
concat_id:
- 含义:从输入表输入的记录中,选取1个字段,按照timestamps倒序排成序列,可以配置参数按照id和timestamp去重,支持用户取top k个数据
使用举例:
-- 用户最近点击的50个商品id
insert into table ${output_table_name}
select nickname,
concat_id(true, item_id, behavior_time, 50) as rt_click_item_seq
from ${source_table}
group by user_id;
-- 1分钟内最近有特征行为用户id列表
insert into table ${output_table_name}
select window_start(behavior_time) as time_id,
concat_id(true, user_id) as user_id_list
from ${source_table}
group by window_time(behavior_time, '1 MINUTE');
sum、avg、count:
- 含义:从输入表输入的记录中,选取1个字段,对指定的时间范围进行求和、求平均值或计数
使用举例
-- 每小时的点击数和曝光数
insert into table ${output_table_name}
select
user_id,
window_start(behavior_time) as time_id,
sum(pv) as pv,
sum(click) as click
from ${source_table}
group by user_id,window_time(behavior_time, '1 HOUR');
总结
基于B端算法的实时特征需求,沉淀了一套基于blink sql + udf实现的实时特征产出系统,对用户输入的sql进行转义,在Bayes平台生成bink SQL Streaming任务,产出实时特征数据存入iGraph当中,沉淀了blink 写入igraph组件,concat_id算子、聚合算子等基础能力,为后续Dolphin streaming 实时特征产出系统打下了基础,支持后续多种特征算子扩展方式,快速支持此类用户需求。
3 关键词批量同步
业务背景
每天有很多商家通过不同渠道加入直通车;而在对新客承接方面存在比较大的空间。另一方面,对于系统的存量客户的低活部分也有较大的优化空间。系统买词作为新客承接、低活促活的一个重要抓手,希望通过对直通车新客和低活客户进行更高频率的关键词更新(天级->小时级),帮助目标客户的广告尝试更多关键词,存优汰劣,达到促活的目标。
基于此需求,我们在现有天级别离线链路的基础上补充小时级的消息更新链路,用来支持标准计划下各词包、以及智能计划的系统词更新,每小时消息更新量在千万量级,使用Blink将全量ODPS请求参数调用faas的函数服务,将每条请求的结果写入到ODPS的输出表中。更新频率在两个小时,更新时间:早8点到晚22点,单次增删规模:增500W/删500W。
主要挑战
- blink批处理作业需要进行小时级调度
- faas函数调用需要限流
解决方案
- 使用Blink UDF实现对request请求调用HSF的函数服务功能
- blink UDF使用RateLimiter进行限流,访问函数服务的QPS可以严格被节点并行度进行控制
- 在Dataworks平台配置shell脚本,进行Bayes平台批计算任务调度
总结
基于此需求,使用blink sql batch模式实现了近实时的此类更新链路,打通了此类批处理作业的调度模式,为后续批作业产品化打下了基础。
四 未来展望
基于B端算法的业务,Dolphin引擎目前已经设计开发了Dolphin streaming链路,用户在极光平台开发实时特征变得跟在odps开发离线表一样简单,用户无需了解实时数据源、底层存储引擎,只需要用sql就可以查询实时特征数据。但是B端算法业务中还有类似于本文中提到的批处理业务,这些业务需要开发blink batch sql、blink streaming batch模式、ODPS UDF和java code任务,并且提供调度脚本,最后将项目进行封装提交给算法团队进行使用。未来我们希望用户能够在极光平台自助开发批量计算业务,降低算法同学开发成本,提供一个可扩展、低成本的批计算引擎能力,支持业务快速迭代,赋能业务落地快速拿到结果。
本文为阿里云原创内容,未经允许不得转载。
面向B端算法实时业务支撑的工程实践的更多相关文章
- 面向 B 端的产品经理
简评:越来越多人涌入产品经理这个岗位,但是面对不同的产品和客户群体,产品经理所需要的技能.知识和经验可能大相庭径. 近几年随着移动互联网的爆发性增长,几乎遍地都是产品经理了.华尔街日报 也曾报道称「产 ...
- Ext-JS-Modern-Demo 面向移动端示例
基于Ext Js 6.5.2 面向移动端示例,低于此版本可能存在兼容问题,慎用 已忽略编译目录,请自行编译运行 Sencha Cmd 版本:v6.5.2.15 git地址:https://github ...
- Ext-JS-Classic-Demo 面向pc端示例
基于Ext Js 6.5.1 面向pc端示例,低于此版本可能存在兼容问题,慎用 已忽略编译目录,请自行编译运行 Sencha Cmd 版本:v6.5.1.240 git地址:https://githu ...
- 服务端、实时、大数据、AI计算
服务端.实时.大数据.AI计算,各种各样的计算,计算机本质是什么,计算机的本质是 利用compute的计算速度为人提供更优的计算结果. 所以实时也好,准实时.离线.AI本质上是两个维度,实时准实时强调 ...
- 腾讯QQ 8.9.3体验版发布 在线文档多端同步实时保存
感谢N软网的投递 腾讯体验中心迎来QQ8.9.3首个维护体验版发布,详细版本号为v8.9.3.21006,上一个体验版v8.9.2.20717发布于4月20日,时隔34天又迎来了更新.本次升级主要是在 ...
- 「面向 offer 学算法」笔面试大杀器 -- 单调栈
目录 前言 单调栈 初入茅庐 小试牛刀 打怪升级 出师试炼 前言 单调栈是一种比较简单的数据结构.虽然简单,但在某些题目中能发挥很好的作用. 最近很多大厂的笔试.面试中都出现了单调栈的题目,而还有不少 ...
- HBase在大搜车金融业务中的应用实践
摘要: 2017云栖大会HBase专场,大搜车高级数据架构师申玉宝带来HBase在大搜车金融业务中的应用实践.本文主要从数据大屏开始谈起,进而分享了GPS风控实践,包括架构.聚集分析等,最后还分享了流 ...
- FPGA加速:面向数据中心和云服务的探索和实践
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由columneditor 发表于云+社区专栏 作者介绍:章恒--腾讯云FPGA专家,目前在腾讯架构平台部负责FPGA云的研发工作,探索 ...
- 携程实时计算平台架构与实践丨DataPipeline
文 | 潘国庆 携程大数据平台实时计算平台负责人 本文主要从携程大数据平台概况.架构设计及实现.在实现当中踩坑及填坑的过程.实时计算领域详细的应用场景,以及未来规划五个方面阐述携程实时计算平台架构与实 ...
- CTR预估算法之FM, FFM, DeepFM及实践
https://blog.csdn.net/john_xyz/article/details/78933253 目录目录CTR预估综述Factorization Machines(FM)算法原理代码实 ...
随机推荐
- vite中配置less,vue3中配置less
前言 如果赶时间请直接使用目录跳到解决问题的部分. 使用的项目使用vue脚手架生成. npm init vue@latest 版本如下 "@vitejs/plugin-vue": ...
- 《TencentNCNN系列》 之工作原理简要解析(以LeNet-5为例)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- 无人不识又无人不迷糊的this
本文分享自华为云社区<3月阅读周·你不知道的JavaScript | 无人不识又无人不迷糊的this>,作者: 叶一一. 关于this this关键字是JavaScript中最复杂的机制之 ...
- ‘MsBuild.exe‘ 不是内部或外部命令,也不是可运行的程序
方法一: 在系统环境变量中的path变量中添加一条路径: 32位环境 C:\Windows\Microsoft.NET\Framework\v4.0.30319 64位环境 C:\Windo ...
- es通过时间聚合查询一周中每天的数据平均值
场景回顾:设备上传的数据保存在es中,大屏模块要统计本周的数据折线图(一个设备三分总上传一次,所以拟定每天聚合求个平均值) kibana查询请求 GET xxxx_2022-10/_search { ...
- Lab1:Xv6 and Unix utilities
Sleep功能 通过接受时间参数,调用system_call 指令 sleep实现该功能 #include "kernel/types.h" #include "kern ...
- debootstrap 命令行安装 debian12(stable) btrfs文件系统 uefi引导 (像arch一样)
1,制作debian12 live 启动盘 2.联网,可以手机usb共享,可以用wpasupplicant连wifi 3.修改镜像列表 sudo nano /etc/apt/source.list 修 ...
- pymysql连接、关闭、查询,python如何操作mysql数据库
1 def get_conn(): 2 """ 3 :return: 连接,游标 4 """ 5 # 创建连接 6 conn = pymys ...
- kafka集群启动命令脚本文件kf.sh
注意代码缩进 添加执行权限 chmod +x kf.sh 1 #! /bin/bash 2 case $1 in 3 "start"){ 4 for i in hadoop102 ...
- 测试开发之系统篇-Docker常用操作
Docker容器(Container)的运行基于镜像(image),您可以在Docker Hub上检索,或通过Dockerfile文件自己构建镜像. 首先拉取MySQL官方镜像的最新版(latest) ...