提到数据库索引,我想你并不陌生,在日常工作中会经常接触到。比如某一个 SQL 查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。但到底什么是索引,索引又是如何工作的呢?今天就让我们一起来聊聊这个话题吧。

 
 
 

数据库索引的内容比较多,我分成了上下两篇文章。索引是数据库系统里面最重要的概念之一,所以我希望你能够耐心看完。在后面的实战文章中,我也会经常引用这两篇文章中提到的知识点,加深你对数据库索引的理解。

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本 500 页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。

索引的常见模型

索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

下面我主要从使用的角度,为你简单分析一下这三种模型的区别。

哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将 ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

你可以设想下,如果你现在要找身份证号在 [ID_card_X, ID_card_Y] 这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。

而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在 [ID_card_X, ID_card_Y] 区间的 User,可以先用二分法找到 ID_card_X(如果不存在 ID_card_X,就找到大于 ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

图 3 二叉搜索树示意图

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))。

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

不管是哈希还是有序数组,或者 N 叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM 树等数据结构也被用于引擎设计中,这里我就不再一一展开了。

你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

截止到这里,我用了半篇文章的篇幅和你介绍了不同的数据结构,以及它们的适用场景,你可能会觉得有些枯燥。但是,我建议你还是要多花一些时间来理解这部分内容,毕竟这是数据库处理数据的核心概念之一,在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。

现在,我们一起进入相对偏实战的内容吧。

在 MySQL 中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于 InnoDB 存储引擎在 MySQL 数据库中使用最为广泛,所以下面我就以 InnoDB 为例,和你分析一下其中的索引模型。

InnoDB 的索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

每一个索引在 InnoDB 里面对应一棵 B+ 树。

假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。

这个表的建表语句是:

mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下。

图 4 InnoDB 的索引组织结构

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

 除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
 

MySQL实战实战系列 04 深入浅出索引(上)的更多相关文章

  1. [MySQL性能优化系列]巧用索引

    1. 普通青年的索引使用方式 假设我们有一个用户表 tb_user,内容如下: name age sex jack 22 男 rose 21 女 tom 20 男 ... ... ... 执行SQL语 ...

  2. 实战webpack系列04

    04. 一切皆模块 Webpack有一个不可不说的优点,它把所有的文件都都当做模块处理,JavaScript代码,CSS和fonts以及图片等等通过合适的loader都可以被处理. 一.CSS 继续上 ...

  3. [转]Ubuntu10下MySQL搭建Amoeba系列(文章索引)

    一.前言(Introduction) 使用了Amoeba有一段时间了,发现官方博客:Amoeba使用指南有很多地方都是错误的,在我实战中给到一些错误的指示,所以我想写些在搭建的实战中给大家一点指引.欢 ...

  4. 【WEB API项目实战干货系列】- 导航篇(十足干货分享)

    在今天移动互联网的时代,作为攻城师的我们,谁不想着只写一套API就可以让我们的Web, Android APP, IOS APP, iPad APP, Hybired APP, H5 Web共用共同的 ...

  5. [MySQL性能优化系列]LIMIT语句优化

    1. 背景 假设有如下SQL语句: SELECT * FROM table1 LIMIT offset, rows 这是一条典型的LIMIT语句,常见的使用场景是,某些查询返回的内容特别多,而客户端处 ...

  6. [MySQL性能优化系列]提高缓存命中率

    1. 背景 通常情况下,能用一条sql语句完成的查询,我们尽量不用多次查询完成.因为,查询次数越多,通信开销越大.但是,分多次查询,有可能提高缓存命中率.到底使用一个复合查询还是多个独立查询,需要根据 ...

  7. Mysql实战45讲 04讲深入浅出索引(上)读书笔记 极客时间

    极客时间 Mysql实战45讲 04讲深入浅出索引 极客时间(上)读书笔记  笔记体悟 1.索引的作用:提高数据查询效率2.常见索引模型:哈希表.有序数组.搜索树3.哈希表:键 - 值(key - v ...

  8. Mysql实战45讲 05讲深入浅出索引(下)极客时间 读书笔记

    极客时间 Mysql实战45讲 04讲深入浅出索引(下)极客时间 笔记体会: 回表:回到主键索引树搜索的过程,称为回表覆盖索引:某索引已经覆盖了查询需求,称为覆盖索引,例如:select ID fro ...

  9. MySQL 笔记整理(4) --深入浅出索引(上)

    笔记记录自林晓斌(丁奇)老师的<MySQL实战45讲> 4) --深入浅出索引(上) 一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样. 索引的常见模型 哈希表: ...

  10. mysql颠覆实战笔记(二)-- 用户登录(一):唯一索引的妙用

    版权声明:笔记整理者亡命小卒热爱自由,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...

随机推荐

  1. MAIXIII(爱芯派)的一种配网并安装nmtui的实现方法

    关于一种MAIXIII(爱芯派)的一种配网并安装nmtui的实现方法 特别感谢sipped的大佬鼠以及多位群友这几天提供的帮助与支持! 0.目录 一,MAIXIII简介 二,到手图展示 三,具体操作方 ...

  2. 多线程的未捕获异常类 UncaughtExceptionHandler 的使用

    一.需要 UncaughtExceptionHandler 的原因 1. 主线程可轻松的发现异常,子线程的异常比较隐蔽,难以发现 程序运行时,子线程发生了异常,并不影响主线程,也不会终止主线程的程序, ...

  3. Request类源码分析、序列化组件介绍、序列化类的基本使用、常用字段类和参数、反序列化之校验、反序列化之保存、APIVIew+序列化类+Response写的五个接口代码、序列化高级用法之source、序列化高级用法之定制字段的两种方式、多表关联反序列化保存、反序列化字段校验其他、ModelSerializer使用

    目录 一.Request类源码分析 二.序列化组件介绍 三.序列化类的基本使用 查询所有和查询单条 四.常用字段类和参数(了解) 常用字段类 字段参数(校验数据来用的) 五.反序列化之校验 六.反序列 ...

  4. 曲线艺术编程 coding curves 第七章 抛物线(Parabolas)

    抛物线 Parabolas 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ 译者:池中物王二狗(sheldon) ...

  5. 深入浅出MySQL事务

    Photo by Lukas Hartmann from Pexels 辞职这段时间以来看见了很多工作之外的东西,我认为这是值得的.同时也有时间和机会来好好整理所学所想,准备开启下一段旅途. 事务的定 ...

  6. ChatGPT:在线免费智能聊天网页版

    在当今网络时代,聊天实现了从文字.语音到视频的全面发展.然而,在众多聊天方式中,许多人更喜欢使用人工智能技术来帮助进行自然的对话交流.那么,是否有一个在线免费ChatGPT网页版,可以提供更好的交互体 ...

  7. Java 使用maven模板创建web项目慢的解决方法

    创建的时候在这里加上这个,使用本地仓库创建. 快捷粘贴↓↓↓ archetypeCatalog local

  8. C++面试八股文:std::deque用过吗?

    某日二师兄参加XXX科技公司的C++工程师开发岗位第26面: 面试官:deque用过吗? 二师兄:说实话,很少用,基本没用过. 面试官:为什么? 二师兄:因为使用它的场景很少,大部分需要性能.且需要自 ...

  9. kafka入门必备知识

    1. Kafka是一个分布式流处理平台: 可以让你发布和订阅流式的记录.这一方面与消息队列或者企业消息系统类似. 可以储存流式的记录,并且有较好的容错性. 可以在流式记录产生时就进行处理. 2. 消息 ...

  10. 简约版八股文(day1)

    Java基础 面向对象的三大基本特征 封装:将一些数据和对这些数据的操作封装在一起,形成一个独立的实体.隐藏内部的操作细节,并向外提供一些接口,来暴露对象的功能. 继承:继承是指子类继承父类,子类获得 ...