balance_dirty_pages_ratelimited分析

  • nr_dirtied_pause:当前task的脏页门限;
  • dirty_exceeded:全局的脏页数超过门限或者该bdi的脏页数超过门限;(dirty_exceeded = (bdi_dirty > bdi_thresh) &&((nr_dirty > dirty_thresh) || strictlimit); )
  • bdp_ratelimits:percpu变量,当前CPU的脏页数
  • ratelimit_pages:CPU的脏页门限

调用balance_dirty_pages的条件有:

1:当前task的脏页数量大于ratelimit ,(如果dirty_exceeded为0,则为current->nr_dirtied_pause;如果dirty_exceeded为1,则最大为32KB)

2:当前CPU的脏页数超过了门限值ratelimit_pages;

3:当前脏页数+退出线程遗留的脏页超过了门限;

void balance_dirty_pages_ratelimited(struct address_space *mapping)
{
struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
int ratelimit;
int *p; if (!bdi_cap_account_dirty(bdi))
return; ratelimit = current->nr_dirtied_pause; /* 门限:初始值为32表示128KB */
if (bdi->dirty_exceeded) /* 如果该值设置了,则需要通过降低平衡触发的门限来加速脏页回收 */
ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); /* 重新修改门限,最大为32KB,初始值128KB,加快回收 */ preempt_disable();
/*
* This prevents one CPU to accumulate too many dirtied pages without
* calling into balance_dirty_pages(), which can happen when there are
* 1000+ tasks, all of them start dirtying pages at exactly the same
* time, hence all honoured too large initial task->nr_dirtied_pause.
*/
/* 即保证当前线程脏页数超过门限,或者当前CPU超过门限,都要回收 */
p = this_cpu_ptr(&bdp_ratelimits); /* 当前CPU的脏页计数 */
if (unlikely(current->nr_dirtied >= ratelimit)) /* 如果当前线程脏页数超过门限值,则肯定会触发下面的回收流程。同时重新计算当前CPU的脏页数 */
*p = 0;
else if (unlikely(*p >= ratelimit_pages)) { /* 默认值为32页 */ /* 当前线程的脏页数未超过门限值,但是当前CPU的脏页数超过CPU脏页门限值,则设置门限为0,肯定会触发回收。同时重新计算当前CPU的脏页数 */
*p = 0;
ratelimit = 0;
}
/*
* Pick up the dirtied pages by the exited tasks. This avoids lots of
* short-lived tasks (eg. gcc invocations in a kernel build) escaping
* the dirty throttling and livelock other long-run dirtiers.
*/
p = this_cpu_ptr(&dirty_throttle_leaks); /* 退出的线程,也放在这里处理 */
if (*p > 0 && current->nr_dirtied < ratelimit) {
unsigned long nr_pages_dirtied;
nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
*p -= nr_pages_dirtied;
current->nr_dirtied += nr_pages_dirtied;
}
preempt_enable(); if (unlikely(current->nr_dirtied >= ratelimit)) /* 当前线程脏页超过门限值 */
balance_dirty_pages(mapping, current->nr_dirtied);
}
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);

正常情况下应该是周期回收和背景回收,不会占用当前task的时间。但是当dirty > dirty_freerun_ceiling(thresh, bg_thresh) 即脏页数大于直接回收门限和背景回收门限的1/2时,需要将当前CPU休眠一会,让回收线程工作。

但是dirty <= dirty_freerun_ceiling(thresh, bg_thresh),也会动态的调整nr_dirtied_pause ,号让其更好的回收,调整的策略为:

static unsigned long dirty_poll_interval(unsigned long dirty,
unsigned long thresh)
{
/* */
if (thresh > dirty) /* */
return 1UL << (ilog2(thresh - dirty) >> 1); return 1; /* 脏页数超过门限值,则返回1页就需要回收 */
}

至于为什么这么做,可以参考如下解析:

/*

Ideally if we know there are N dirtiers, it’s safe to let each task

poll at (thresh-dirty)/N without exceeding the dirty limit.

However we neither know the current N, nor is sure whether it will

rush high at next second. So sqrt is used to tolerate larger N on

increased (thresh-dirty) gap:

irb> 0.upto(10) { |i| mb=2**i; pages=mb<<(20-12); printf “%4d\t%4d\n”, mb, Math.sqrt(pages)}

1 16

2 22

4 32

8 45

16 64

32 90

64 128

128 181

256 256

512 362

1024 512

The above table means, given 1MB (or 1GB) gap and the dd tasks polling

balance_dirty_pages() on every 16 (or 512) pages, the dirty limit

won’t be exceeded as long as there are less than 16 (or 512) concurrent

dd’s.

Note that dirty_poll_interval() will mainly be used when (dirty < freerun).

When the dirty pages are floating in range [freerun, limit],

“[PATCH 14/18] writeback: control dirty pause time” will independently

adjust tsk->nr_dirtied_pause to get suitable pause time.

So the sqrt naturally leads to less overheads and more N tolerance for

large memory servers, which have large (thresh-freerun) gaps.

*/

void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
/* 可用内存并不是系统所有内存,而是free pages + reclaimable pages(文件页) */
const unsigned long available_memory = global_dirtyable_memory();
unsigned long background;
unsigned long dirty;
struct task_struct *tsk; if (vm_dirty_bytes)
dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
else
dirty = (vm_dirty_ratio * available_memory) / 100; if (dirty_background_bytes)
background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
else
background = (dirty_background_ratio * available_memory) / 100; if (background >= dirty)
background = dirty / 2;
tsk = current;
if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { /* 如果设置了该属性PF_LESS_THROTTLE或者是实时线程,门限稍微提高1/4 */
background += background / 4;
dirty += dirty / 4;
}
*pbackground = background;
*pdirty = dirty;
trace_global_dirty_state(background, dirty);
} static unsigned long global_dirtyable_memory(void)
{
unsigned long x; /* 可用内存并不是系统所有内存,而是free pages + file pages(文件页) */
x = global_page_state(NR_FREE_PAGES);
x -= min(x, dirty_balance_reserve); x += global_page_state(NR_INACTIVE_FILE);
x += global_page_state(NR_ACTIVE_FILE); if (!vm_highmem_is_dirtyable)
x -= highmem_dirtyable_memory(x); return x + 1; /* Ensure that we never return 0 */
}

1:如果可回收+正在回写脏页数量 < background和显式回写阈值的均值此次先不启动回写,否则启动background回写

2:如果可回收的脏页数大于背景回收门限值,则触发背景回收执行;

static void balance_dirty_pages(struct address_space *mapping,
unsigned long pages_dirtied)
{
unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
unsigned long background_thresh;
unsigned long dirty_thresh;
long period;
long pause;
long max_pause;
long min_pause;
int nr_dirtied_pause;
bool dirty_exceeded = false;
unsigned long task_ratelimit;
unsigned long dirty_ratelimit;
unsigned long pos_ratio;
struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; //单独门限值回收
unsigned long start_time = jiffies; for (;;) {
unsigned long now = jiffies;
unsigned long uninitialized_var(bdi_thresh);
unsigned long thresh;
unsigned long uninitialized_var(bdi_dirty);
unsigned long dirty;
unsigned long bg_thresh; /*
* Unstable writes are a feature of certain networked
* filesystems (i.e. NFS) in which data may have been
* written to the server's write cache, but has not yet
* been flushed to permanent storage.
*/
nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
global_page_state(NR_UNSTABLE_NFS); /* 全局 文件脏页 + 网络文件系统 */ /* = file_dirty + unstable_nfs */
nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); /*全局 文件总的脏页+包括正在回写 */ /* = file_dirty + writeback + unstable_nfs */ global_dirty_limits(&background_thresh, &dirty_thresh);//获取两个门限值 if (unlikely(strictlimit)) { /* 单独bdi回收 */
bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
&bdi_dirty, &bdi_thresh, &bg_thresh); dirty = bdi_dirty;
thresh = bdi_thresh;
} else { /* 全局回收 */
dirty = nr_dirty; /* 全局 文件总的脏页+包括正在回写 */
thresh = dirty_thresh;
bg_thresh = background_thresh;
} /*
* Throttle it only when the background writeback cannot
* catch-up. This avoids (excessively) small writeouts
* when the bdi limits are ramping up in case of !strictlimit.
*
* In strictlimit case make decision based on the bdi counters
* and limits. Small writeouts when the bdi limits are ramping
* up are the price we consciously pay for strictlimit-ing.
*/
/* 小于直接回收文件和背景回收的/2, 不占用本线程时间;否则说明背景回收没有运行,需要占用本线程时间, */
if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) { //(thresh + bg_thresh) / 2; 不回收
current->dirty_paused_when = now;
current->nr_dirtied = 0; /* 脏页数量重新置0 */
current->nr_dirtied_pause =
dirty_poll_interval(dirty, thresh); /* 重新设置线程脏页门限 */
break;
} if (unlikely(!writeback_in_progress(bdi))) /* 唤醒真正的回写线程 */
bdi_start_background_writeback(bdi); if (!strictlimit)
bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
&bdi_dirty, &bdi_thresh, NULL); //nr_dirty > dirty_thresh
/*
* 如果是单个bdi独自回收,当前bdi的 脏页超过门限即回收;
* 如果是整个系统回收,当前bdi超过门限且系统的脏页也要超超过门限;
*/
dirty_exceeded = (bdi_dirty > bdi_thresh) &&
((nr_dirty > dirty_thresh) || strictlimit); //超过门限 if (dirty_exceeded && !bdi->dirty_exceeded)
bdi->dirty_exceeded = 1; //超过门限,后面需要加速回收 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
nr_dirty, bdi_thresh, bdi_dirty,
start_time); dirty_ratelimit = bdi->dirty_ratelimit;
pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
background_thresh, nr_dirty,
bdi_thresh, bdi_dirty);
task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
RATELIMIT_CALC_SHIFT;
max_pause = bdi_max_pause(bdi, bdi_dirty);
min_pause = bdi_min_pause(bdi, max_pause,
task_ratelimit, dirty_ratelimit,
&nr_dirtied_pause); if (unlikely(task_ratelimit == 0)) {
period = max_pause;
pause = max_pause;
goto pause;
}
period = HZ * pages_dirtied / task_ratelimit;
pause = period;
if (current->dirty_paused_when)
pause -= now - current->dirty_paused_when;
/*
* For less than 1s think time (ext3/4 may block the dirtier
* for up to 800ms from time to time on 1-HDD; so does xfs,
* however at much less frequency), try to compensate it in
* future periods by updating the virtual time; otherwise just
* do a reset, as it may be a light dirtier.
*/
if (pause < min_pause) {
trace_balance_dirty_pages(bdi,
dirty_thresh,
background_thresh,
nr_dirty,
bdi_thresh,
bdi_dirty,
dirty_ratelimit,
task_ratelimit,
pages_dirtied,
period,
min(pause, 0L),
start_time);
if (pause < -HZ) {
current->dirty_paused_when = now;
current->nr_dirtied = 0;
} else if (period) {
current->dirty_paused_when += period;
current->nr_dirtied = 0;
} else if (current->nr_dirtied_pause <= pages_dirtied)
current->nr_dirtied_pause += pages_dirtied;
break;
}
if (unlikely(pause > max_pause)) {
/* for occasional dropped task_ratelimit */
now += min(pause - max_pause, max_pause);
pause = max_pause;
} pause:
trace_balance_dirty_pages(bdi,
dirty_thresh,
background_thresh,
nr_dirty,
bdi_thresh,
bdi_dirty,
dirty_ratelimit,
task_ratelimit,
pages_dirtied,
period,
pause,
start_time);
__set_current_state(TASK_KILLABLE);
io_schedule_timeout(pause);//有可能会切出去,但最大超过200ms current->dirty_paused_when = now + pause;
current->nr_dirtied = 0;
current->nr_dirtied_pause = nr_dirtied_pause; /*
* This is typically equal to (nr_dirty < dirty_thresh) and can
* also keep "1000+ dd on a slow USB stick" under control.
*/
if (task_ratelimit)
break; /*
* In the case of an unresponding NFS server and the NFS dirty
* pages exceeds dirty_thresh, give the other good bdi's a pipe
* to go through, so that tasks on them still remain responsive.
*
* In theory 1 page is enough to keep the comsumer-producer
* pipe going: the flusher cleans 1 page => the task dirties 1
* more page. However bdi_dirty has accounting errors. So use
* the larger and more IO friendly bdi_stat_error.
*/
if (bdi_dirty <= bdi_stat_error(bdi))
break; if (fatal_signal_pending(current))
break;
} if (!dirty_exceeded && bdi->dirty_exceeded) //如果不超过门限,则置0
bdi->dirty_exceeded = 0; if (writeback_in_progress(bdi)) //正在回收,则退出
return; /*
* In laptop mode, we wait until hitting the higher threshold before
* starting background writeout, and then write out all the way down
* to the lower threshold. So slow writers cause minimal disk activity.
*
* In normal mode, we start background writeout at the lower
* background_thresh, to keep the amount of dirty memory low.
*/
/*
* 节能模式,起到什么作用呢??
*/
if (laptop_mode)
return; if (nr_reclaimable > background_thresh) //可回收的页面大于background_thresh,则触发线程异步回收
bdi_start_background_writeback(bdi);
}

balance_dirty_pages_ratelimited分析的更多相关文章

  1. Linux Kernel文件系统写I/O流程代码分析(一)

    Linux Kernel文件系统写I/O流程代码分析(一) 在Linux VFS机制简析(二)这篇博客上介绍了struct address_space_operations里底层文件系统需要实现的操作 ...

  2. 用户空间缺页异常pte_handle_fault()分析--(上)【转】

    转自:http://blog.csdn.net/vanbreaker/article/details/7881206 版权声明:本文为博主原创文章,未经博主允许不得转载. 前面简单的分析了内核处理用户 ...

  3. alias导致virtualenv异常的分析和解法

    title: alias导致virtualenv异常的分析和解法 toc: true comments: true date: 2016-06-27 23:40:56 tags: [OS X, ZSH ...

  4. 火焰图分析openresty性能瓶颈

    注:本文操作基于CentOS 系统 准备工作 用wget从https://sourceware.org/systemtap/ftp/releases/下载最新版的systemtap.tar.gz压缩包 ...

  5. 一起来玩echarts系列(一)------箱线图的分析与绘制

    一.箱线图 Box-plot 箱线图一般被用作显示数据分散情况.具体是计算一组数据的中位数.25%分位数.75%分位数.上边界.下边界,来将数据从大到小排列,直观展示数据整体的分布情况. 大部分正常数 ...

  6. 应用工具 .NET Portability Analyzer 分析迁移dotnet core

    大多数开发人员更喜欢一次性编写好业务逻辑代码,以后再重用这些代码.与构建不同的应用以面向多个平台相比,这种方法更加容易.如果您创建与 .NET Core 兼容的.NET 标准库,那么现在比以往任何时候 ...

  7. UWP中新加的数据绑定方式x:Bind分析总结

    UWP中新加的数据绑定方式x:Bind分析总结 0x00 UWP中的x:Bind 由之前有过WPF开发经验,所以在学习UWP的时候直接省略了XAML.数据绑定等几个看着十分眼熟的主题.学习过程中倒是也 ...

  8. 查看w3wp进程占用的内存及.NET内存泄露,死锁分析

    一 基础知识 在分析之前,先上一张图: 从上面可以看到,这个w3wp进程占用了376M内存,启动了54个线程. 在使用windbg查看之前,看到的进程含有 *32 字样,意思是在64位机器上已32位方 ...

  9. ZIP压缩算法详细分析及解压实例解释

    最近自己实现了一个ZIP压缩数据的解压程序,觉得有必要把ZIP压缩格式进行一下详细总结,数据压缩是一门通信原理和计算机科学都会涉及到的学科,在通信原理中,一般称为信源编码,在计算机科学里,一般称为数据 ...

  10. ABP源码分析一:整体项目结构及目录

    ABP是一套非常优秀的web应用程序架构,适合用来搭建集中式架构的web应用程序. 整个Abp的Infrastructure是以Abp这个package为核心模块(core)+15个模块(module ...

随机推荐

  1. 交叉熵、KL 散度 | 定义与相互关系

    1 KL 散度 对于离散概率分布 \(P\) 和 \(Q\) ,KL 散度定义为: \[\text{KL}(P \| Q) = -E_{x\sim P}\log P(x)-\log Q(x) \\ = ...

  2. 如何通过minIO在后端实现断点续传

    首先是黑马的媒资管理模块流程图:前端负责计算媒资文件的MD5值,同时对媒资文件进行分块. 后端需要以下几个接口: 1.检查分块是否存在(传入参数为视频唯一标识信息与块信息):检查当前分块是否已经上传至 ...

  3. golang轻量级的代码复制粘贴检查器 cpd

    golang轻量级的代码复制粘贴检查器 cpd 项目地址: https://github.com/dengjiawen8955/copy-paste-detector 快速开始 clone git c ...

  4. 【DataBase】MySQL 03 基本命令 & 语法规范

    参考至视频:P12 - P15 https://www.bilibili.com/video/BV1xW411u7ax?p=82 SHOW 和相关的基本命令 查看所有的数据库 SHOW DATABAS ...

  5. 【Java】系统找不到指定路径

    报错信息: 2021-05-26 13:50:11,737 RMI TCP Connection(3)-127.0.0.1 ERROR DefaultRolloverStrategy contains ...

  6. 【SpringBoot】15 数据访问P3 整合Mybatis

    重新建立一个SpringBoot工程 选择依赖组件 然后删除不需要的Maven&Git文件 还是先查看我们的POM文件 整合Mybatis的组件多了这一个,默认的版本是3.5.4 然后再看看整 ...

  7. Continue-AI编程助手本地部署llama3.1+deepseek-coder-v2

    领先的开源人工智能代码助手.您可以连接任何模型和任何上下文,以在 IDE 内构建自定义自动完成和聊天体验 推荐以下开源模型: 聊天:llama3.1-8B 推理代码:deepseek-coder-v2 ...

  8. OneFlow计算框架的OneAgent是不是一个子虚乌有的东西?

    自己是搞强化学习的,今天看了些OneFlow计算框架的一些资料,发现OneFlow官方一直有宣传自己的强化学习框架--OneAgent,但是十分诡异的是从了OneFlow的官方宣传可以看到这个词,但是 ...

  9. 机器人的运动控制是否可以引入生物学信息,生物学信息是否可以辅助机器人的智能控制算法的训练:《Robotic prosthetic ankles improve 'natural' movement, stability》

    相关内容: Robotic prosthetic ankles improve 'natural' movement, stability 看了上面的论文的介绍(内容没看到,不是open access ...

  10. 如何使用git通过ssh协议拉取gitee上的项目代码——如何正确的免密使用git

    如何在gitee网站上生成/添加SSH公钥见教程: 生成/添加SSH公钥 测试公私秘钥是否成功: ssh -T git@gitee.com ============================== ...