LeetCode279:完全平方数,动态规划解法超过46%,作弊解法却超过97%
欢迎访问我的GitHub
这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos
本篇概览
本篇概览
- 这是道高频面试题,值得一看
- 首先,这道题的难度是中等
- 来看题目描述:
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
- 示例1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
- 示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
- 提示:
1 <= n <= 104
解题思路
- 该题的解题思路是动态规划,核心解法有两点:
- 数字i,可能是某个数字的平方,例如数字9是数字3的平方
- 数字i,如果不是某个数字的平方,该数字能用此表达式表达:i = i - j*j + j*j
- 对于上述第二种情况,就是动态规划状态转移方程的核心啦!
- 假设dp[i]的定义是数字i的完全平方数的最少数量,那么表达式i = i - j*j + j*j就很容易用来分析dp[i]了
- 简单地说,就是:dp[i] = dp[i-j*j] + 1
- 当然了,上述只是最基本的推测,不代表已经解完了,还剩一个重点:j到底是几?
- 以10为例,10=(10-3*3) + 3*3,但是这不是唯一,还有10=(10-2*2) + 2*2,所以到底j等于几?根据题意,应该是dp[10-3*3]和dp[10-2*2]中最小的那个
- 至此,分析完毕,可以愉快的写代码了
编码
- 完整源码如下所示,可见,对应前面分析的j的多种可能,要取最小值
class Solution {
public int numSquares(int n) {
// i = i-j*j + j*j - 注意这个j*j,就是完全平方数中的一个
// dp[i]定义:数字i的完全平方数
int[] dp = new int[n+1];
dp[0] = 1;
for (int i=1;i<=n;i++) {
dp[i] = Integer.MAX_VALUE;
for(int j=1;j*j<=i;j++) {
// 如果出现i等于某个数字的平方,那么i的完全平方数就是1
if (j*j==i) {
dp[i] = 1;
break;
}
// +1的意思就是j*j表示完全平方数中的一个
dp[i] = Math.min(dp[i-j*j]+1, dp[i]);
}
}
return dp[n];
}
}
- 编码完成后提交,顺利AC,只是成绩很不理想,仅超过45%,如下图
反思,为啥成绩这么差?
- 这么简单的动态规划操作,为何成绩这么落后?
- 于是,我想到了一种可能:说不定可以作弊...
- 理由有二
- 首先,这道题的输入是个数字,输出也是个数字,那就存在提前算好的可能,然后按输入返回提前算好的记过
- 其次,也是最关键的,就是题目要求中的那句提示,如下图,n小于等于一万,所以,我只要存一万个数字的对应关系,就行了呗:
- 看到这里,聪明的您应该知道我要如何作弊了,没错,就是把每个数字的完全平方数算出来,改动如下图
- 然后,运行上述代码,入参是10000,即可在控制台得到一个字符串,那就是从0到10000,每个数字的完全平方数
- 接下来的要做的就很简单了,如下所示,用上述字符串做成一个int数组array,然后numSquares方法中就一行代码,返回入参n对应的完全平方数就行了
class Solution {
// 数组的值就是刚才打印出来的字符串,太长了,就不完全贴出来了
private int[] array = new int [] {1,1,2,3,1,2,3,4,2,1...};
public int numSquares(int n) {
return array[n];
}
}
- 至此,就一行代码了,相信成绩不会差了吧,运行一下试试,如下图,大跌眼镜了,一行代码也要45ms,从之前的超过45%跌落到超过22%
- 突如其来的丢脸...
- 好吧,让我对着这一行代码捋捋,代码太少了,很容易捋清楚,如下图
- 找到了问题,改起来也就很容易了,如下图黄框所示,这一下,array数组在编译成class文件的时候被丢进了常量区,每次创建Solution实例的时候,不会再去创建array对象了
- 再次提交,这一回,作弊成功,用时和内存消耗双双超过百分之九十七
- 总的来说,动态规划是正解,如果条件允许,也能用歪门邪道作弊试试,可以开阔思路,同时取得好成绩,令人身心愉悦
欢迎关注博客园:程序员欣宸
LeetCode279:完全平方数,动态规划解法超过46%,作弊解法却超过97%的更多相关文章
- LeetCode 62,从动态规划想到更好的解法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第36篇文章,我们一起来看下LeetCode的62题,Unique Paths. 题意 其实这是一道老掉牙的题目了 ...
- leetcode-91-解码方法(动态规划和递归两种解法)
题目描述: 一条包含字母 A-Z 的消息通过以下方式进行了编码: 'A' -> 1 'B' -> 2 ... 'Z' -> 26 给定一个只包含数字的非空字符串,请计算解码方法的总数 ...
- 好!recover-binary-search-tree(难)& 两种好的空间O(n)解法 & 空间O(1)解法
https://leetcode.com/mockinterview/session/result/xyc51it/https://leetcode.com/problems/recover-bina ...
- 图解leetcode279 —— 完全平方数
每道题附带动态示意图,提供java.python两种语言答案,力求提供leetcode最优解. 描述: 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 ...
- 98. 验证二叉搜索树 前序遍历解法以及后续遍历解法(go语言)
leetcode题目 98. 验证二叉搜索树 前序遍历 最简洁的答案版本,由于先判断的是根节点,所以直接判断当前root的值v,是否满足大于左子树最大,小于右子树最小,然后再遍历左子树,右子树是否是这 ...
- [Swift]LeetCode279. 完全平方数 | Perfect Squares
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...
- leetcode279. 完全平方数
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12输出: 3 解释: 12 = ...
- Letter Combinations of a Phone Number:深度优先和广度优先两种解法
Letter Combinations of a Phone Number Given a digit string, return all possible letter combinations ...
- LeetCode算法题-Number Complement(Java实现-五种解法)
这是悦乐书的第240次更新,第253篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第107题(顺位题号是476).给定正整数,输出其补码数.补充策略是翻转其二进制表示的位 ...
- LeetCode算法题-Intersection of Two Arrays(Java实现-四种解法)
这是悦乐书的第207次更新,第219篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第75题(顺位题号是349).给定两个数组,编写一个函数来计算它们的交集.例如: 输入: ...
随机推荐
- 安装ODOO13
在CentOS 7服务器下安装和配置Odoo 13 录到服务器: ssh root@your_server_ip1如需检查计算机上安装的CentOS的版本,可以运行以下命令: cat /etc/red ...
- Oracle Linux切换uek内核到rhck内核解决ACFS兼容问题
背景:协助客户做验证,客户使用的是RHEL7.6环境,我这边是OEL7.6环境,开始以为区别不大,结果acfs兼容还是遇到问题,特此记录下. 现象:asmca图形没有acfs相关内容,无法使用acfs ...
- VLAN——提高网络性能、安全性和灵活性的利器
前言 VLAN是Virtual Local Area Network的缩写,它是一种通过网络交换机虚拟划分局域网的技术.VLAN可以将一个物理局域网划分成多个逻辑上的虚拟局域网,各个虚拟局域网之间相互 ...
- API全场景零码测试机器人,华为云发布ATGen in CodeArts TestPlan
摘要:华为云ATGen现开放对外邀测,欢迎预约. 本文分享自华为云社区<API全场景零码测试机器人,华为云发布ATGen in CodeArts TestPlan>,作者:华为云头条 . ...
- @Document元注解的使用
@Documented注解标记的元素,Javadoc工具会将此注解标记元素的注解信息包含在javadoc中.默认,注解信息不会包含在Javadoc中.示例如下: 声明Book注解,并使用@Docume ...
- 300行代码模拟cdn
这一生听过许多道理,但还是过不好这一生,这是因为缺少真正的动手实践,光听道理,缺少动手实践的过程,学习难免会让人觉得味同嚼蜡,所以我的分享都比较倾向于实践,在一次次动手实践的过程中感受知识原本纯真的模 ...
- 文献精读1:SpikTransformer
Spikformer code source(pku):GitHub - ZK-Zhou/spikformer: ICLR 2023, Spikformer: When Spiking Neural ...
- CSS border(边框)
CSS 边框属性 CSS边框属性允许你指定一个元素边框的样式和颜色. 可以为上下左右每个框 定制不同的样式和颜色. 边框样式 边框样式属性指定要显示什么样的边界. border-style属性用来定义 ...
- 使用Python读取图片
一.Python学习两大道具 1. dir()工具 作用:支持打开package,看到里面的工具函数 示例: (1) 输出torch库包含的函数 dir(torch) (2) 输出torch.AVG函 ...
- 关于ChatGPT与机器时代的展望
关于 ChatGPT 与机器时代的展望 机器人这一概念,最初不是出自计算机科学家或工程师之手,而是来自于捷克的戏剧家卡雷尔·恰佩克(Karl Capek)在 1920 年编排的一出名为"罗森 ...