第二十四个知识点:描述一个二进制m组的滑动窗口指数算法

简单回顾一下我们知道的。

大量的密码学算法的大数是基于指数问题的安全性,例如RSA或者DH算法。因此,现代密码学需要大指数模幂算法的有效实现。我们应该从一个简化的方案开始思考:计算\(x^a\mod N\),我们可以用指数算法来求\(x^a\),然后再约减到\(N\)。然而,对大多数密码算法来说,\(x^a\)都是非常大的。现在,大多数传统的方法能被简单的在每个阶段模\(N\)。这回产生一些改进的技术。下面我会介绍一些计算\(X^E \mod N\)可能的方法。

二进制算法

二进制模幂算法和传统的求幂的二次方方法非常像。实际上,唯一的不同就是我们把\(N\)表示成二进制形式然后计算。我们从左向右计算或者从右向左计算。

m-ary

m-ary方法也相似,但是它把指数看成位序列,然后把它们堪称\(M = 2^m\)的元素。实际上,二进制方法被认为是一种m-ary方法在\(M = 2\)时刻的情况。那么它如何工作呢?首先我们对所有的\(X^i\),其中\(i = 1\)到\(2^m-1\),计算一个查找表。然后我们通过基于\(M\)的指数\(E\)的算法。然后我们每次计算的值只是才表中查找而不是移动m位。

这个方法和二进制算法进行比较,意味着我们能提前计算很多东西,然后做更少的乘法。

滑动窗口

因此,m-ary窗口会约减我们计算乘法的次数,但是我们可以做的更好吗?答案是对的。假设我们令\(m = 4\),同时\(E = 22 = (0,0,0,1,0,1,1,0)_2 = (1,6)_{2^4}\)。然后我们用4-ary算法,但是如果我们重新规定窗口大小的话,我们能做的更好:这里只有三个1,但是我们却用一个4-ary的算法。如果我们提前知道,我们就可以用我们的查找表来计算了,同时只需要一次查找。因此滑动窗口的话,我们首先对\(E\)做一个变换成\(E = \sum x_i2^i\)。这里让\(x_i\)尽可能是0。这回导致更多的预先运算,但是同时也提升了具体运算的效率。

参考

https://zh.wikipedia.org/wiki/平方求幂

第二十四个知识点:描述一个二进制m组的滑动窗口指数算法的更多相关文章

  1. 第二十六个知识点:描述NAF标量乘法算法

    第二十六个知识点:描述NAF标量乘法算法 NAF标量乘法算法是标量乘法算法的一种增强,该算法使用了非邻接形式(Non-Adjacent Form)表达,减少了算法的期望运行时间.下面是具体细节: 让\ ...

  2. 第三十四个知识点:描述攻击离散对数问题的baby-step/Giant-step方法

    第三十四个知识点:描述攻击离散对数问题的baby-step/Giant-step方法 Baby-step/Giant-step是Dnaiel Shanks为解决DLP问题开发的算法.DLP问题已经是许 ...

  3. 第四十四个知识点:在ECC密码学方案中,描述一些基本的防御方法

    第四十四个知识点:在ECC密码学方案中,描述一些基本的防御方法 原文地址:http://bristolcrypto.blogspot.com/2015/08/52-things-number-44-d ...

  4. 第二十八个知识点:什么是公钥密码学的IND-CCA安全定义?

    第二十八个知识点:什么是公钥密码学的IND-CCA安全定义? 我们将在这篇博客中讨论公钥加密的IND-CCA安全. IND-CCA安全代表选择明文的不可伪造性.这样的安全方案的思想就是给定一个密文,攻 ...

  5. NeHe OpenGL教程 第二十四课:扩展

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  6. javaSE第二十四天

    第二十四天    363 1:多线程(理解)    363 (1)JDK5以后的Lock锁    363 A:定义    363 B:方法:    364 C:具体应用(以售票程序为例)    364 ...

  7. Gradle 1.12用户指南翻译——第二十四章. Groovy 插件

    其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Github上的地址: https://g ...

  8. 第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。

    第二十五个知识点:使用特殊的素数定义\(GF(p)\)和\(GF(2^n)\)的方法. 在我们之前看到的博客中,当实现密码学方案时,一个最频繁调用的操作就是模运算.不幸的是,尽管模块化的使用非常广泛, ...

  9. SQL注入之Sqli-labs系列第二十四关(二阶注入)

    开始挑战第二十四关(Second Degree Injections) 0x1 前言 SQL注入一般分为两类:一阶SQL注入(普通SQL注入),二阶SQL注入 .二次注入不是注入两次的意思,请不要混淆 ...

随机推荐

  1. Linux系统时钟与硬件时钟

    linux系统有两个时钟:一个是由主板电池驱动的硬件时钟(Real Time Clock),也叫做RTC或者叫CMOS时钟.当操作系统关机的时候,用这个来记录时间,但是对于运行的系统是不用这个时间的: ...

  2. ps精修

    1.磨皮方法: a,, 添加高斯模糊后,按住alt键新建图层蒙版,设置前景色为白色,用画笔在脸上雀斑的位置涂抹,注意脸轮廓位置不要涂抹.最后添加曲线提亮 b. 添加蒙尘和划痕后,后面上面的一样

  3. 【Linux】【Basis】块存储,文件存储,对象存储

    1. 块存储: 定义:这种接口通常以QEMU Driver或者Kernel Module的方式存在,这种接口需要实现Linux的Block Device的接口或者QEMU提供的Block Driver ...

  4. redis入门到精通系列(四):Jedis--使用java操作redis详解

    (一)前言 如果不把数据库和后端语言联系起来,就起不到数据库应该要起到的作用.Java语言通过JDBC操作mysql,用Jedis操作redis.当然了,java操作redis的方式不止jedis一种 ...

  5. GCD的补充

    1-1 关于GCD中的创建和释放     在iOS6.0之前,在GCD中每当使用带creat单词的函数创建对象之后,都应该对其进行一次release操作.           在iOS6.0之后,GC ...

  6. 神器Tampermonkey的安装使用

    Tampermonkey是一款基于浏览器的神奇插件,在国内称为油猴,开发者可以在上面开发满足自己需求的各类浏览器应用脚本.不过经过全球各地无数开发者数年的积累现在其官网已经有一大把的优秀的现成脚本,完 ...

  7. ES6——>let,箭头函数,this指向小记

    let let允许你声明一个作用域被限制在块级中的变量.语句或者表达式. 还是那个经典的问题:创建5个li,点击不同的li能够打印出当前li的序号. 如果在for循环中使用**var**来声明变量i的 ...

  8. Java RestTemplate传递参数

    最近使用Spring 的 RestTemplate 工具类请求接口的时候发现参数传递的一个坑,也就是当我们把参数封装在Map里面的时候,Map 的类型选择. 使用RestTemplate post请求 ...

  9. C# 温故知新 第二篇 C# 程序的通用结构

    C# 程序由一个或多个文件组成. 每个文件均包含零个或多个命名空间. 一个命名空间包含类.结构.接口.枚举.委托等类型或其他命名空间. 以下示例是包含所有这些元素的 C# 程序主干. 主要包括  1. ...

  10. Quartz在.NET中的使用

    一.背景 例如需要在某年某月去将数据库的某个数据更新或者同步,又或者是每隔一段时间来执行一部分代码去调用接口,但是又不想人为的手动去执行 针对此类业务可以使用"定时调用任务",市面 ...