Anti-prime Sequences
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 3355   Accepted: 1531

Description

Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence.


We can extend the definition by defining a degree danti-prime
sequence as one where all consecutive subsequences of length 2,3,...,d
sum to a composite number. The sequence above is a degree 2 anti-prime
sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11.
The lexicographically .rst degree 3 anti-prime sequence for these
numbers is 1,3,5,4,6,2,10,8,7,9.

Input

Input
will consist of multiple input sets. Each set will consist of three
integers, n, m, and d on a single line. The values of n, m and d will
satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0
0 will indicate end of input and should not be processed.

Output

For
each input set, output a single line consisting of a comma-separated
list of integers forming a degree danti-prime sequence (do not insert
any spaces and do not split the output over multiple lines). In the case
where more than one anti-prime sequence exists, print the
lexicographically first one (i.e., output the one with the lowest first
value; in case of a tie, the lowest second value, etc.). In the case
where no anti-prime sequence exists, output



No anti-prime sequence exists.

Sample Input

1 10 2
1 10 3
1 10 5
40 60 7
0 0 0

Sample Output

1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:在【2,d】长度的连续序列的和都要为合数。
思路:DFS。
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<queue>
7 #include<stack>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 bool prime[20000]= {0};
12 int tt[10000];
13 bool cm[1005];
14 int ts=0;
15 bool check(int n,int m);
16 int dfs(int n,int m,int d,int kk,int pp);
17 int main(void)
18 {
19 int i,j,k;
20 for(i=2; i<=1000; i++)
21 {
22 if(!prime[i])
23 {
24 for(j=i; (i*j)<=20000; j++)
25 {
26 prime[i*j]=true;
27 }
28 }
29 }
30 int n,m;
31 while(scanf("%d %d %d",&n,&m,&k),n!=0&&m!=0&&k!=0)
32 {
33 memset(cm,0,sizeof(cm));
34 ts=0;
35 int uu=dfs(0,m-n+1,k,n,m);
36 if(uu)
37 {
38 printf("%d",tt[0]);
39 for(i=1; i<(m-n+1); i++)
40 {
41 printf(",%d",tt[i]);
42 }
43 printf("\n");
44 }
45 else printf("No anti-prime sequence exists.\n");
46 }
47 }
48 bool check(int n,int m)
49 {
50 int i,j;
51
52
53 LL sum=tt[m];
54 for(i=m-1; i>=max(n,0); i--)
55 {
56 sum+=tt[i];
57 if(!prime[sum])
58 return false;
59 }
60 return true;
61 }
62 int dfs(int n,int m,int d,int kk,int pp)
63 {
64 int i;
65 if(ts)return 1;
66 if(n==m)
67 {
68
69 bool cc=check(n-d,m-1);
70 if(!cc)
71 {
72 return 0;
73 }
74 ts=1;
75 return 1;
76 }
77 else
78 {
79 bool cc=check(n-d,n-1);
80 if(cc)
81 {
82 for(i=kk; i<=pp; i++)
83 {
84 if(ts)return 1;
85 if(!cm[i])
86 {
87 tt[n]=i;
88 cm[i]=true;
89 int uu=dfs(n+1,m,d,kk,pp);
90 cm[i]=false;
91 if(uu)return 1;
92 }
93 }
94 }
95 else return 0;
96 }
97 return 0;
98 }

Anti-prime Sequences的更多相关文章

  1. Who Gets the Most Candies?(线段树 + 反素数 )

    Who Gets the Most Candies? Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d &am ...

  2. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  3. DFS(8)——poj2034Anti-prime Sequences

    一.题目回顾 题目链接:Anti-prime Sequences Sample Input 1 10 2 1 10 3 1 10 5 40 60 7 0 0 0   Sample Output 1,3 ...

  4. 河南省第十届省赛 Binary to Prime

    题目描述: To facilitate the analysis of  a DNA sequence,  a DNA sequence is represented by a binary  num ...

  5. Farey sequences

    n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n. Stern-Brocot树(SB Tree)可以生成这个序列 {0/1,1/1} {0/1,1/2,1/1} {0/1 ...

  6. Java 素数 prime numbers-LeetCode 204

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  7. Prime Generator

    Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...

  8. ABP Zero示例项目登录报错“Empty or invalid anti forgery header token.”问题解决

    ABP Zero项目,登录时出现如图"Empty or invalid anti forgery header token."错误提示的解决方法: 在 WebModule.cs的P ...

  9. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

随机推荐

  1. SpringBoot整合Shiro 一:搭建环境

    Java项目的安全框架一般使用 shiro 与 spring security 具体怎么选择可以参考文章:安全框架 Shiro 和 Spring Security 如何选择 我这里选择使用Shiro ...

  2. 巩固java第六天

    巩固内容: HTML 空元素 没有内容的 HTML 元素被称为空元素.空元素是在开始标签中关闭的. <br> 就是没有关闭标签的空元素(<br> 标签定义换行). 在 XHTM ...

  3. 日常Java 2021/9/21

    将Java数组中的元素前后反转.题目要求:已知一个数组arr = {11,12,13,14,15}用程序实现把该数组中的元素值交换,交换后的数组arr = { 15,14,13,12,11},并输出交 ...

  4. 超好玩:使用 Erda 构建部署应用是什么体验?

    作者|郑成 来源|尔达 Erda 公众号 导读:最近在 Erda 上体验了一下构建并部署一个应用,深感其 DevOps 平台的强大与敏捷,不过为了大家能够快速上手,我尽量简化应用程序,用一个简单的返回 ...

  5. 案例 高级定时器和通用定时器产生pwm的区别 gd32和stm32

  6. C++ 继续(3n+1)猜想

    1005 继续(3n+1)猜想 (25分)   卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过 ...

  7. tomcat 之 session服务器 (memcache)

    #: 在tomcat各节点安装memcached [root@node1 ~]# yum install memcached -y #: 下载tomcat所需的jar包(此处在视频中找软件) [roo ...

  8. ES安装简记

    JDK # java -versionjava version "1.8.0_231"Java(TM) SE Runtime Environment (build 1.8.0_23 ...

  9. 'this' pointer in C++

    The 'this' pointer is passed as a hidden argument to all nonstatic member function calls and is avai ...

  10. mysql之对象创建

    1 --创建表空间 2 create tablespace tablespace_name 3 innodb and ndb: 4 add datafile 'file_name' 5 innodb ...