Anti-prime Sequences
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 3355   Accepted: 1531

Description

Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence.


We can extend the definition by defining a degree danti-prime
sequence as one where all consecutive subsequences of length 2,3,...,d
sum to a composite number. The sequence above is a degree 2 anti-prime
sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11.
The lexicographically .rst degree 3 anti-prime sequence for these
numbers is 1,3,5,4,6,2,10,8,7,9.

Input

Input
will consist of multiple input sets. Each set will consist of three
integers, n, m, and d on a single line. The values of n, m and d will
satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0
0 will indicate end of input and should not be processed.

Output

For
each input set, output a single line consisting of a comma-separated
list of integers forming a degree danti-prime sequence (do not insert
any spaces and do not split the output over multiple lines). In the case
where more than one anti-prime sequence exists, print the
lexicographically first one (i.e., output the one with the lowest first
value; in case of a tie, the lowest second value, etc.). In the case
where no anti-prime sequence exists, output



No anti-prime sequence exists.

Sample Input

1 10 2
1 10 3
1 10 5
40 60 7
0 0 0

Sample Output

1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:在【2,d】长度的连续序列的和都要为合数。
思路:DFS。
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<queue>
7 #include<stack>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 bool prime[20000]= {0};
12 int tt[10000];
13 bool cm[1005];
14 int ts=0;
15 bool check(int n,int m);
16 int dfs(int n,int m,int d,int kk,int pp);
17 int main(void)
18 {
19 int i,j,k;
20 for(i=2; i<=1000; i++)
21 {
22 if(!prime[i])
23 {
24 for(j=i; (i*j)<=20000; j++)
25 {
26 prime[i*j]=true;
27 }
28 }
29 }
30 int n,m;
31 while(scanf("%d %d %d",&n,&m,&k),n!=0&&m!=0&&k!=0)
32 {
33 memset(cm,0,sizeof(cm));
34 ts=0;
35 int uu=dfs(0,m-n+1,k,n,m);
36 if(uu)
37 {
38 printf("%d",tt[0]);
39 for(i=1; i<(m-n+1); i++)
40 {
41 printf(",%d",tt[i]);
42 }
43 printf("\n");
44 }
45 else printf("No anti-prime sequence exists.\n");
46 }
47 }
48 bool check(int n,int m)
49 {
50 int i,j;
51
52
53 LL sum=tt[m];
54 for(i=m-1; i>=max(n,0); i--)
55 {
56 sum+=tt[i];
57 if(!prime[sum])
58 return false;
59 }
60 return true;
61 }
62 int dfs(int n,int m,int d,int kk,int pp)
63 {
64 int i;
65 if(ts)return 1;
66 if(n==m)
67 {
68
69 bool cc=check(n-d,m-1);
70 if(!cc)
71 {
72 return 0;
73 }
74 ts=1;
75 return 1;
76 }
77 else
78 {
79 bool cc=check(n-d,n-1);
80 if(cc)
81 {
82 for(i=kk; i<=pp; i++)
83 {
84 if(ts)return 1;
85 if(!cm[i])
86 {
87 tt[n]=i;
88 cm[i]=true;
89 int uu=dfs(n+1,m,d,kk,pp);
90 cm[i]=false;
91 if(uu)return 1;
92 }
93 }
94 }
95 else return 0;
96 }
97 return 0;
98 }

Anti-prime Sequences的更多相关文章

  1. Who Gets the Most Candies?(线段树 + 反素数 )

    Who Gets the Most Candies? Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d &am ...

  2. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  3. DFS(8)——poj2034Anti-prime Sequences

    一.题目回顾 题目链接:Anti-prime Sequences Sample Input 1 10 2 1 10 3 1 10 5 40 60 7 0 0 0   Sample Output 1,3 ...

  4. 河南省第十届省赛 Binary to Prime

    题目描述: To facilitate the analysis of  a DNA sequence,  a DNA sequence is represented by a binary  num ...

  5. Farey sequences

    n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n. Stern-Brocot树(SB Tree)可以生成这个序列 {0/1,1/1} {0/1,1/2,1/1} {0/1 ...

  6. Java 素数 prime numbers-LeetCode 204

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  7. Prime Generator

    Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...

  8. ABP Zero示例项目登录报错“Empty or invalid anti forgery header token.”问题解决

    ABP Zero项目,登录时出现如图"Empty or invalid anti forgery header token."错误提示的解决方法: 在 WebModule.cs的P ...

  9. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

随机推荐

  1. C#点击按钮添加标签

    <asp:Button ID="button1" runat="server" Text="创建" onclick="But ...

  2. Js数组内对象去重

    let person = [ {id: 0, name: "小明"}, {id: 1, name: "小张"}, {id: 2, name: "小李& ...

  3. 从jvm字节码指令看i=i++和i=++i的区别

    1. 场景的产生 先来看下下面代码展示的两个场景 @Testvoid testIPP() { int i = 0; for (int j = 0; j < 10; j++) { i = i++; ...

  4. 生成接口文档并同步到postman

    前言 当我们开发需要测试接口时,会遇到以下几个问题 1.如果接口过多,参数过多,一个个参数复制到postman简直能要了我的狗命,重复劳动过多. 2.如果接口过多,参数过多,编写接口文档给测试人员或者 ...

  5. c学习 - 第四章:顺序程序设计

    4.4 字符数据的输入输出 putchar:函数的作用是想终端输出一个字符 putchar(c) getchar:函数的作用是从输入设备获取一个字符 getchar(c) 4.5 格式输入与输出 pr ...

  6. 微服务中心Eureka

    一.简介 Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS(AWS 是业务流程管理开发平台AWS Enterprise BPM Platform ...

  7. 为什么volatile能保证有序性不能保证原子性

    对于内存模型的三大特性:有序性.原子性.可见性. 大家都知道volatile能保证可见性和有序性但是不能保证原子性,但是为什么呢? 一.原子性.有序性.可见性 1.原子性: (1)原子的意思代表着-- ...

  8. Mysql资料 索引

    目录 一.介绍 什么是索引? 为什么要有索引呢? 二.索引的原理 原理 磁盘IO与预读 索引的数据结构 b+树的查找过程 b+树性质 三.索引管理 MySQL的索引分类 各索引应用场景 索引类型 操作 ...

  9. Mysql原有环境部署多个版本

    目录 一.环境准备 二.下载安装包 三.Mysql-5.7单独部署 四.启动Mysql-5.7 五.muliti使用 一.环境准备 原先已经有一个5.6版本的数据库在运行了,当前操作是完全不影响原数据 ...

  10. AD小白如何发板厂制板--导出gerber文件和钻孔文件+嘉立创下单教程

    AD如何发工程制板子? 方式1,发PCB源文件给板厂 方式2,发一些工艺文件给板厂,这样就无须泄漏你的PCB源文件了,一个硬件工程师必须要掌握方式2. 方式2要做的就是导出gerber文件和钻孔文件, ...