线性回归

线性回归,就是能够用一个直线较为精确地描述数据之间的关系。这样当出现新的数据的时候,就能够预测出一个简单的值。

线性回归中最常见的就是房价的问题。一直存在很多房屋面积和房价的数据,如下图所示:

在这种情况下,就可以利用线性回归构造出一条直线来近似地描述放假与房屋面积之间的关系,从而就可以根据房屋面积推测出房价。

线性回归模型

通过线性回归构造出来的函数一般称之为了线性回归模型。线性回归模型的函数一般写作为:

使用markdown不好描述数学公式,所以大家就讲究看吧

代价函数

通过线性回归算法,我们可能会得到很多的线性回归模型,但是不同的模型对于数据的拟合或者是描述能力是不一样的。我们的目的最终是需要找到一个能够最精确地描述数据之间关系的线性回归模型。这是就需要用到代价函数。代价函数就是用来描述线性回归模型与正式数据之前的差异。如果完全没有差异,则说明此线性回归模型完全描述数据之前的关系。如果需要找到最佳拟合的线性回归模型,就需要使得对应的代价函数最小,下面是相关的公式描述

  • Hypothesis,表示的就是线性回归模型
  • Cost Function,代价函数
  • Goal,就是要求对应的代价函数最小

线性回归模型求解-1

假设在线性回归模型中仅仅只存在一个函数,就是斜率参数。即theta-0是0。

如果存在如下的数据:

图中对应的3个点分别为(1,1),(2,2),(3,3)

那么很明显,最佳线性回归模型就是h(x)=x

如果通过实验证明呢?

我们画出在theta-1处于不同值的代价函数。

通过代价函数的的图形,也可以发现当theta-1为1的时候,代价函数所对应的值最小。

所以最佳你和函数为h(x)=x

PS:这种题目在高中数学中很常见

线性回归模型求解-2

上面讨论的是一个参数的问题,接下来讨论的是两个参数的问题。

如果存在如下的数据:

这样可以看到最后的线性回归模型就会存在两个参数。最后的代价函数图形为:

是一个3D函数,不是很好求解,但是可以转化为一个轮廓图,如下:

两个轴分别表示 θ0 和 θ1 而这些一圈一圈的椭圆形 每一个圈就表示 J(θ0,θ1) 相同的所有点的集合。

最后通过测试发现(就是手动地选择θ0 和 θ1来计算代价函数),发现当选择的点位于最里面的椭圆的中心的时候,代价函数的值最小。那么选取的点就可以作为最佳的线性回归模型。

当然这只是手动地方式来进行测试的,最好的方法当然是通过机器学习算出这个最佳的线性模型。

总结

线性回归模型还是比较简单的,也比较容易理解。

为了了能到远方,脚下的每一步都不能少。

Andrew Ng机器学习算法入门(三):线性回归算法的更多相关文章

  1. Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降

    网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...

  2. Andrew Ng机器学习算法入门(一):简介

    简介 最近在参加一个利用机器学习来解决安全问题的算法比赛,但是对机器学习的算法一直不了解,所以先了解一下机器学习相关的算法. Andrew Ng就是前段时间从百度离职的吴恩达.关于吴恩达是谁,相信程序 ...

  3. Andrew Ng机器学习课程笔记(三)之正则化

    Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...

  4. Andrew Ng机器学习课程笔记(一)之线性回归

    Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...

  5. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  6. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  7. Andrew Ng机器学习课程笔记(二)之逻辑回归

    Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...

  8. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

  9. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

随机推荐

  1. STL之string容器

    string string封装了char*,管理这个字符串,是一个char*型的容器. string的相关操作 头文件 #include<string> string构造函数 string ...

  2. mysql中的基础查询 练习

    #进阶1:基础查询 /* 语法: select 查询列表 from 表名; 类似于:System.out.println(打印东西); 特点: 1.查询列表可以是:表中的字段.常量值.表达式.函数 2 ...

  3. 关于Java中Collections.sort和Arrays.sort的稳定性问题

    一 问题的提出   关于Java中Collections.sort和Arrays.sort的使用,需要注意的是,在本文中,比较的只有Collections.sort(List<T> ele ...

  4. ECharts系列 (01):地图三级下钻

    前言 最近项目中用到了地图下钻功能,GitHub上找到了一个轮子 - echarts3-chinese-map-drill-down,启动项目看了一下Demo,动画衔接的很流畅,感觉做的非常棒,膜拜大 ...

  5. Java例题_26 请输入星期几的第一个字母来判断一下是星期几,如果第一个字母一样,则继续 判断第二个字母。

    1 /*26 [程序 26 求星期] 2 题目:请输入星期几的第一个字母来判断一下是星期几,如果第一个字母一样,则继续 判断第二个字母. 3 程序分析:用情况语句比较好,如果第一个字母一样,则判断用情 ...

  6. abp加DDD开发:低耦合、可复用、可扩展的【工单】业务模块-简介和集成

    前言 很多场景[单体+模块化]比微服务更合适,开发难度低.代码可复用性强.可扩展性强.模块化开发有些难点,模块启动与卸载.模块之间的依赖和通讯.asp.net core abp为我们提供了模块化开发能 ...

  7. C++并发与多线程学习笔记--多线程数据共享问题

    创建和等待多个线程 数据和共享问题分析 只读的数据 有读有写 其他案例 共享数据的保护案例代码 创建和等待多个线程 服务端后台开发就需要多个线程执行不同的任务.不同的线程执行不同任务,并返回执行结果. ...

  8. Java生鲜电商平台-API接口设计之token、timestamp、sign 具体架构与实现(APP/小程序,传输安全)

    Java生鲜电商平台-API接口设计之token.timestamp.sign 具体设计与实现 说明:在实际的业务中,难免会跟第三方系统进行数据的交互与传递,那么如何保证数据在传输过程中的安全呢(防窃 ...

  9. php添加excel更新数据表数据

    公司有个需求,是用excel更新数据的,把错误的行列放到一个数组返回出来,正常的数据则插入,且返回数量 1.先需要引入phpspreadsheet,这里使用composer 安装 composer r ...

  10. Mybatis的Dao层实现原理

    1.Mybatis的Dao层实现 1.1 传统开发方式 1.1.1编写UserDao接口 public interface UserDao { List<User> findAll() t ...