题意:

     给你n个区间,每个区间最少取两个元素,问你所有区间最少取几个元素(可以满足
每个区间最少两个元素)。

思路:

     这个题目感觉挺巧妙的,之前在杭电上做过这个题目,这个题目可以用查分约束来做
,对于每一个区间a,b我们可以这样 b - a >= 2 那么建图a->b 长度是2,全建完之后不要忘记题目的隐含条件,查分约束中隐含条件很重要,这个题目的隐含条件就是相邻的两个点之间的个数大于等于0,小于等于1,也就是 
0 =< i - (i - 1) <= 1,然后拆成两部分,
对于i - (i - 1) >= 0  建立 (i - 1)-> i 长度0,对于i - (i - 1) <= 1先转换成 (i - 1) - i >= -1 建立 i -> (i - 1) 长度是-1,然后以最小点为起点一边最长路,在查分约束中要记住,求最小就跑最长路,求最大就跑最短路,其他的没啥。

#include<stdio.h>

#include<string.h>

#include<queue>

#define N_node 11000

#define N_edge 33000

#define INF 1000000000

using namespace std;

typedef struct

{

   int to ,next ,cost;

}STAR;

STAR E[N_edge];

int list[N_node] ,tot;

int mark[N_node] ,mki[N_node] ,s_x[N_node];

void add(int a ,int b ,int c)

{

     E[++tot].to = b;

     E[tot].cost = c;

     E[tot].next = list[a];

     list[a] = tot;

}

bool spfa(int s ,int n)

{

   for(int i = 0 ;i <= n ;i ++)

   s_x[i] = -INF ,mark[i] = mki[i] = 0;

   queue<int>q;

   q.push(s);

   s_x[s] = 0 ,mark[s] = mki[s] = 1;

   while(!q.empty())

   {

      int xin ,tou;

      tou = q.front();

      q.pop();

      mark[tou] = 0;

      for(int k = list[tou] ;k ;k = E[k].next)

      {

          xin = E[k].to;

          if(s_x[xin] < s_x[tou] + E[k].cost)

          {

             s_x[xin] = s_x[tou] + E[k].cost;

             if(!mark[xin])

             {

                mark[xin] = 1;

                if(++mki[xin] > n) return 0;

                q.push(xin);

             }

           }

       }

   }

   return 1;

}

int main ()

{

    int i ,a ,b ,n ,Min ,Max;

    while(~scanf("%d" ,&n))

    {

       Min = INF ,Max = -INF;

       memset(list ,0 ,sizeof(list)) ,tot = 1;

       for(i = 1 ;i <= n ;i ++)

       {

          scanf("%d %d" ,&a ,&b);

          b++;

          if(Min > a) Min = a;

          if(Max < b) Max = b;

          add(a ,b ,2);

       }

       for(i = Min ;i <= Max ;i ++)

       add(i - 1 ,i ,0) ,add(i ,i - 1 ,-1);

       spfa(Min ,Max);

       printf("%d\n" ,s_x[Max]);

    }

    return 0;

}

      

POJ 1716 区间最小点个数的更多相关文章

  1. POJ 3252 区间内一个数的二进制中0的数量要不能少于1的数量(数位DP)

    题意:求区间内二进制中0的数量要不能少于1的数量 分析:很明显的是数位DP: 菜鸟me : 整体上是和数位dp模板差不多的 , 需要注意的是这里有前导零的影响 , 所以需要在dfs()里面增加zor ...

  2. POJ 3171 区间最小花费覆盖 (DP+线段树

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4245   Accepted: 1429 D ...

  3. POJ 1201 Intervals || POJ 1716 Integer Intervals 差分约束

    POJ 1201 http://poj.org/problem?id=1201 题目大意: 有一个序列,题目用n个整数组合 [ai,bi,ci]来描述它,[ai,bi,ci]表示在该序列中处于[ai, ...

  4. 【POJ 1716】Integer Intervals(差分约束系统)

    id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS   Memory L ...

  5. 【学习笔记】RMQ-Range Minimum/Maximum Query (区间最小/最大值)

    RMQ是一类询问区间最小/最大值的问题. 这类问题一般分成两类:静态区间(无修改),动态区间(带修改). 对于动态区间查询最大/最小,我们显然可以用线段树来解决…… 那么对于静态区间查询最大/最小的问 ...

  6. 求n个数中的最大或最小k个数

    //求n个数中的最小k个数        public static void TestMin(int k, int n)        {            Random rd = new Ra ...

  7. SPOJ CNTPRIME 13015 Counting Primes (水题,区间更新,求区间的素数个数)

    题目连接:http://www.spoj.com/problems/CNTPRIME/ #include <iostream> #include <stdio.h> #incl ...

  8. nyoj 678 最小K个数之和

    最小K个数之和 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 输入n个整数,输出其中最小的K个数之和.例如输入4,5,1,1,6,2,7,3,3这9个数字,当k=4 ...

  9. POJ 3356 AGTC(最小编辑距离)

    POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...

随机推荐

  1. windows10 缺失 msvcp140.dll 解决办法

    1.问题描述 我更新完windows10 驱动后,出现计算机缺失msvcp140.dll文件,虚机和QQ都无法启动 2.解决办法 查找大量文章,最终发现通过重新安装 Visual Studio 201 ...

  2. C# 基础 - 日志捕获一使用 StreamWriter

    public static class LogHelper { private static readonly string _baseDir = AppDomain.CurrentDomain.Ba ...

  3. Apache配置 8.配置防盗链

    (1)介绍 防盗链,通俗讲,就是不让别人盗用你网站上的资源.这个资源,通常指的是图片.视频.歌曲.文档等. (2)配置 配置防盗链先编辑主机配置文件: #vim /usr/local/apache2. ...

  4. 用水浒传来学习OKR

    用水浒传来学习OKR 目录 用水浒传来学习OKR 0x00 摘要 0x01 OKR 1.1 基本概念 1.2 OKR管理的意义 1.3 Objective 1.3.1 什么是好的O 1.3.2 上下级 ...

  5. 一个操作 cookie 的原生方法 cookieStore

    我们平时对 cookie 的增删改查等操作,都是在操作 document.cookie,这里我们介绍一个新方法cookieStore. 1. 平时如何操作 cookie document.cookie ...

  6. Java 语言基础 (初识Java语言, 变量和数据类型, 运算符, 流程控制语句, 数组)

    初始 Java 语言 Java SE -- Java Platform, Standard Edition 是 Java 平台的基础 Java SE 以前称为 J2SE, 可以编写桌面应用和基于 we ...

  7. 从零学脚手架(八)---webpack-dev-server源码分析

    上一篇中介绍了webpack-dev-server属性配置 这一篇就简单的梳理下webpack-dev-server内部实现. 由于涉及到源码解析,所以会涉及到一些比较难啃的知识,我会尽量进行简单化描 ...

  8. wrf模拟的domain图绘制

    wrf模拟的区域绘制,domain图,利用python的cartopy库绘制模拟区域 参考Liang Chen的draw_wrf_domian.py这个代码, 出处python画wrf模式的模拟区域 ...

  9. C# 8 - Nullable Reference Types 可空引用类型

    在写C#代码的时候,你可能经常会遇到这个错误: 但如果想避免NullReferenceException的发生,确实需要做很多麻烦的工作. 可空引用类型 Null Reference Type 所以, ...

  10. Docker安装完成后启动报错:Failed to start Docker Application Container Engine

    报错如下:显示没有启动 先关闭防火墙:防火墙关闭指令请看  <a href="Linux防火墙篇">https://www.cnblogs.com/szx666/p/1 ...