题意:

     给你n个区间,每个区间最少取两个元素,问你所有区间最少取几个元素(可以满足
每个区间最少两个元素)。

思路:

     这个题目感觉挺巧妙的,之前在杭电上做过这个题目,这个题目可以用查分约束来做
,对于每一个区间a,b我们可以这样 b - a >= 2 那么建图a->b 长度是2,全建完之后不要忘记题目的隐含条件,查分约束中隐含条件很重要,这个题目的隐含条件就是相邻的两个点之间的个数大于等于0,小于等于1,也就是 
0 =< i - (i - 1) <= 1,然后拆成两部分,
对于i - (i - 1) >= 0  建立 (i - 1)-> i 长度0,对于i - (i - 1) <= 1先转换成 (i - 1) - i >= -1 建立 i -> (i - 1) 长度是-1,然后以最小点为起点一边最长路,在查分约束中要记住,求最小就跑最长路,求最大就跑最短路,其他的没啥。

#include<stdio.h>

#include<string.h>

#include<queue>

#define N_node 11000

#define N_edge 33000

#define INF 1000000000

using namespace std;

typedef struct

{

   int to ,next ,cost;

}STAR;

STAR E[N_edge];

int list[N_node] ,tot;

int mark[N_node] ,mki[N_node] ,s_x[N_node];

void add(int a ,int b ,int c)

{

     E[++tot].to = b;

     E[tot].cost = c;

     E[tot].next = list[a];

     list[a] = tot;

}

bool spfa(int s ,int n)

{

   for(int i = 0 ;i <= n ;i ++)

   s_x[i] = -INF ,mark[i] = mki[i] = 0;

   queue<int>q;

   q.push(s);

   s_x[s] = 0 ,mark[s] = mki[s] = 1;

   while(!q.empty())

   {

      int xin ,tou;

      tou = q.front();

      q.pop();

      mark[tou] = 0;

      for(int k = list[tou] ;k ;k = E[k].next)

      {

          xin = E[k].to;

          if(s_x[xin] < s_x[tou] + E[k].cost)

          {

             s_x[xin] = s_x[tou] + E[k].cost;

             if(!mark[xin])

             {

                mark[xin] = 1;

                if(++mki[xin] > n) return 0;

                q.push(xin);

             }

           }

       }

   }

   return 1;

}

int main ()

{

    int i ,a ,b ,n ,Min ,Max;

    while(~scanf("%d" ,&n))

    {

       Min = INF ,Max = -INF;

       memset(list ,0 ,sizeof(list)) ,tot = 1;

       for(i = 1 ;i <= n ;i ++)

       {

          scanf("%d %d" ,&a ,&b);

          b++;

          if(Min > a) Min = a;

          if(Max < b) Max = b;

          add(a ,b ,2);

       }

       for(i = Min ;i <= Max ;i ++)

       add(i - 1 ,i ,0) ,add(i ,i - 1 ,-1);

       spfa(Min ,Max);

       printf("%d\n" ,s_x[Max]);

    }

    return 0;

}

      

POJ 1716 区间最小点个数的更多相关文章

  1. POJ 3252 区间内一个数的二进制中0的数量要不能少于1的数量(数位DP)

    题意:求区间内二进制中0的数量要不能少于1的数量 分析:很明显的是数位DP: 菜鸟me : 整体上是和数位dp模板差不多的 , 需要注意的是这里有前导零的影响 , 所以需要在dfs()里面增加zor ...

  2. POJ 3171 区间最小花费覆盖 (DP+线段树

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4245   Accepted: 1429 D ...

  3. POJ 1201 Intervals || POJ 1716 Integer Intervals 差分约束

    POJ 1201 http://poj.org/problem?id=1201 题目大意: 有一个序列,题目用n个整数组合 [ai,bi,ci]来描述它,[ai,bi,ci]表示在该序列中处于[ai, ...

  4. 【POJ 1716】Integer Intervals(差分约束系统)

    id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS   Memory L ...

  5. 【学习笔记】RMQ-Range Minimum/Maximum Query (区间最小/最大值)

    RMQ是一类询问区间最小/最大值的问题. 这类问题一般分成两类:静态区间(无修改),动态区间(带修改). 对于动态区间查询最大/最小,我们显然可以用线段树来解决…… 那么对于静态区间查询最大/最小的问 ...

  6. 求n个数中的最大或最小k个数

    //求n个数中的最小k个数        public static void TestMin(int k, int n)        {            Random rd = new Ra ...

  7. SPOJ CNTPRIME 13015 Counting Primes (水题,区间更新,求区间的素数个数)

    题目连接:http://www.spoj.com/problems/CNTPRIME/ #include <iostream> #include <stdio.h> #incl ...

  8. nyoj 678 最小K个数之和

    最小K个数之和 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 输入n个整数,输出其中最小的K个数之和.例如输入4,5,1,1,6,2,7,3,3这9个数字,当k=4 ...

  9. POJ 3356 AGTC(最小编辑距离)

    POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...

随机推荐

  1. python面试题总结

    Python语言特性 1. Python的函数参数传递 ​ 看两个如下例子,分析运行结果 #代码1 a = 1 def fun(a): a = 2 fun(a) print(a) #1 #代码2 a ...

  2. External Libraries中没有Maven的jar包的原因(已解决)

    **深坑!** ## External Libraries中没有Maven的jar包的原因(已解决) 2021年3月1日 --- 搭建一个新项目 IDEA 从 Git 上拉 拉去Maven项目然后 m ...

  3. android底部导航栏小结

    android自带的有TabHost,但好像无法满足要求, 本文只记录使用 TabLayout + Fragment  和 android 自带的 BottomNavigationView + Fra ...

  4. 最新版Swagger 3升级指南和新功能体验!

    Swagger 3.0 发布已经有一段时间了,它于 2020.7 月 发布,但目前市面上使用的主流版本还是 Swagger 2.X 版本和少量的 1.X 版本,然而作为一名合格的程序员怎么能不折腾新技 ...

  5. 通过 Battery Historian 工具分析 Android APP 耗电情况

    电量统计模块概述 Android 从两个层面统计电量的消耗,分别为 软件排行榜 及 硬件排行榜.它们各有自己的耗电榜单,软件排行榜为机器中每个 App 的耗电榜单,硬件排行榜则为各个硬件的耗电榜单.这 ...

  6. elf.h

    1 /* This file defines standard ELF types, structures, and macros. 2 Copyright (C) 1995-2019 Free So ...

  7. 全网最详细的Linux命令系列-rm命令

    今天学习一下linux中删除文件和目录的命令: rm命令.rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所有文件及子目录均删除.对于链接文件,只是删除 ...

  8. [Fundamental of Power Electronics]-PART I-3.稳态等效电路建模,损耗和效率-3.5/3.6 示例:Boost变换器中包含的半导体传导损耗/要点小结

    3.5 示例:Boost变换器中包含的半导体传导损耗 作为最后一个示例,让我们考虑对图3.22所示的Boost变换器中的半导体传导损耗进行建模.功率损耗的另一个主要来源是半导体器件的正向电压降引起的传 ...

  9. Python数据分析入门(十七):绘制条形图

    条形图的绘制方式跟折线图非常的类似,只不过是换成了plt.bar方法.plt.bar方法有以下常用参数: x:一个数组或者列表,代表需要绘制的条形图的x轴的坐标点. height:一个数组或者列表,代 ...

  10. Dynamics CRM的Associate功能

    Dynamics CRM有一种特殊的关联关系叫Associate,一般常见于为用户分配角色.给团队添加用户.团队添加角色.队列添加用户等等.在一些特定场景下我们不可能把所有的操作都通过手动来完成尤其是 ...