CF802O-April Fools‘ Problem(hard)【wqs二分,优先队列】
正题
题目链接:https://www.luogu.com.cn/problem/CF802O
题目大意
\(n\)天每条有\(a_i\)和\(b_i\)。
每条可以花费\(a_i\)准备至多一道题,可以花费\(b_i\)打印至多一道准备好了的题。
求准备\(k\)道题最少要花费多少。
\(1\leq k\leq n\leq 5\times 10^5\)
解题思路
这也能是\(wqs\)二分是我没想到的。
物品可以分成两种,准备题目和打印题目。
然后因为这是个费用流模型所以答案肯定是下凸的。
然后这两种物品中恰好要打印\(k\)道题。
那就是\(wqs\)二分一下减去的值,然后维护的时候直接用优先队列求能搞到的最大值。
就是每次把\(a_i\)丢进去然后如果\(b_i\)就找到之前最小的一个数然后把\(b_i-mid\)丢进去(可撤销)就好了。
时间复杂度\(O(n\log W)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
#define mp(x,y) make_pair(x,y)
using namespace std;
const ll N=5e5+10;
ll n,k,a[N],b[N];
priority_queue<pair<ll,ll> >q;
signed main()
{
scanf("%lld%lld",&n,&k);
for(ll i=1;i<=n;i++)scanf("%lld",&a[i]);
for(ll i=1;i<=n;i++)scanf("%lld",&b[i]);
ll l=0,r=2e9;
while(l<=r){
ll mid=(l+r)>>1,cnt=0,ans=0;
for(ll i=1;i<=n;i++){
q.push(mp(-a[i],0));
ll tmp=b[i]-mid-q.top().first;
if(tmp<0)ans+=tmp,q.pop(),q.push(mp(b[i]-mid,1));
}
while(!q.empty())cnt+=q.top().second,q.pop();
if(cnt==k)return printf("%lld\n",ans+k*mid)&0;
if(cnt<k)l=mid+1;
else r=mid-1;
}
return 0;
}
CF802O-April Fools‘ Problem(hard)【wqs二分,优先队列】的更多相关文章
- 【最小费用最大流】N. April Fools' Problem (medium)
http://codeforces.com/contest/802/problem/N [题解] 方法一: #include<bits/stdc++.h> using namespace ...
- 决策单调性&wqs二分
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...
- 坑爹CF April Fools Day Contest题解
H - A + B Strikes Back A + B is often used as an example of the easiest problem possible to show som ...
- April Fools Day Contest 2014 H. A + B Strikes Back
H. A + B Strikes Back time limit per test 1 second memory limit per test 256 megabytes input standar ...
- April Fools Day Contest 2014
April Fools Day Contest 2014 A.C.H三道题目 ============================================================= ...
- CF739E Gosha is hunting DP+wqs二分
我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...
- wqs二分
今天模拟赛有一道林克卡特树,完全没有思路 赛后想了一想,不就是求\(k+1\)条不相交的链,使其权值之和最大嘛,傻了. 有一个最裸的\(DP\),设\(f[i][j][k]\)表示在以\(i\)为根的 ...
- 关于WQS二分算法以及其一个细节证明
应用分析 它的作用就是题目给了一个选物品的限制条件,要求刚好选$m$个,让你最大化(最小化)权值, 然后其特点就是当选的物品越多的时候权值越大(越小). 算法分析 我们先不考虑物品限制条件, 假定我们 ...
- [总结] wqs二分学习笔记
论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\ ...
随机推荐
- SpringBoot整合SpringBatch
一.引入依赖 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&q ...
- 消除不受信任的HTML (来防止XSS攻击)
问题 在做网站的时候,经常会提供用户评论的功能.有些不怀好意的用户,会搞一些脚本到评论内容中,而这些脚本可能会破坏整个页面的行为,更严重的是获取一些机要信息,此时需要清理该HTML,以避免跨站脚本cr ...
- JAVA中的clone方法剖析
原文出自:http://blog.csdn.net/shootyou/article/details/3945221 java中也有这么一个概念,它可以让我们很方便的"制造"出一个 ...
- python 截屏操作
方法1: 用pyscreenshot,https://pypi.org/project/pyscreenshot/ 方法2:用autopy,https://pypi.org/project/autop ...
- Zookeeper:进大厂不得不学的分布式协同利器!
大家好,我是冰河~~ 最近,有很多小伙伴让我更新一些Zookeeper的文章,正好也趁着清明假期把之前自己工作过程当中总结的Zookeeper知识点梳理了一番,打算写一个[精通Zookeeper系列] ...
- Jenkins 使用PowerShell插件部署Net5项目
Jenkins安装 PowerShell plugin 插件 新建自由项目 拖到 构建 处,添加 PowerShell 构建 贴入下方脚本即可 # 变量 $ProjectPath = "E: ...
- Docker 学习目录
docker 概述 docker是什么 使用最广泛的肉开源容器引擎 其他如rocket,containerd,pouch等容器引擎 一种系统级虚拟化技术 传统的kvm xen,exsi,vmware ...
- HTML一小时入门,半天掌握
还没有写完,后续持续更新 首先来熟悉一下html的基本结构 <!DOCTYPE HTML> <html> <head> <meta charset=" ...
- Qt 程序发布以及打包成exe安装包
一.简述 Qt 项目开发完成之后,需要打包发布程序,而因为用户电脑上没有 Qt 配置环境,所以需要将 release 生成的 exe 文件和所依赖的 dll 文件复制到一个文件夹中,然后再用 Inno ...
- linux 命令进阶篇之二
一.预备知识 选取init的进程. cat :由第一行开始显示文件内容 tac:由最后一行开始显示,有没有发现和cat是反过来写的 more:一页一页的显示内容 less:与more相似,但是可以往前 ...