题目链接

点我跳转

题目大意

给定 \(N\) 台电脑,起初每台电脑都是关闭的

现在你可以随意打开电脑,但如果第 \(i-1\)、第 \(i+1\) 台电脑是开启的,则第 \(i\) 台电脑也会自动开启,而你无法手动开启它

问你有多少种打开电脑的方法,使得最后所有电脑都是开着的

解题思路

分成两步来解决.

第一步:

考虑:如果 \(N\) 台电脑我都要手动开启,有多少种方法?

可以枚举是从哪台电脑开始打开:

  • 从 \(1\) 开始,剩下的 \(N-1\) 必须按照 \(2,3,...,n\) 的顺序开(不理解可以画一下)
  • 从 \(2\) 开始,对于 \(2\) 左边的电脑 \([3\)~\(N]\),\(4\) 必须在 \(3\) 开了之后开,\(5\) 必须在 \(4\) 开了之后开 \(...\) ,而 \(1\) 可以在任意时刻开机
  • \(...\)
  • 从 \(k\) 开始开,对于 \(k\) 左边的电脑, 它们的相对开机顺序必须是 \(k + 1 , k + 2 , ... , n\)

    对于\(k\) 右边的电脑,它们的相对开机顺序必须是 \(k-1,k-2,...,1\)

    不过左右两边的开机顺序是可以穿插在一起的

所以手动开启 \(N\) 台电脑的方案数为 \(C_{n-1}^{1}+C_{n-1}^{2}+\ldots +C_{n-1}^{n-1} = 2^{n-1}\)

第二步:

考虑:最后电脑开启的状态?

显然最后电脑开启的状态会是这样的:

手动开启 \(1\sim X_1\) → 自动开启 \(X_1+1\) → 手动开启 \(X_1+2\sim X2\) 台 →自动开启 \(X_2+1\) → \(...\) → 手动开启 \(X_{n-1} + 1\sim X_n\) ,其中需要保证 \(X_i + 1 < N\)

于是我们可以定义 \(f[i][j]\) 表示:前 \(i\) 台电脑,手动打开 \(j\) 台, 第 \(i\) 台是手动打开 ,

第 \(i + 1\) 台是自动打开的方案数

那么 \(f[i][j]\) → \(f[i + 1 + K][j + X_i]\) 的意义为:

手动打开 \(pos \sim i\) → 自动打开\(i+1\) → 手动打开 \(i + 2 \sim X_i\) 的过程

  • \(f[i+1+X_i][j+X_i]\) 相对 \(f[i][j]\) 又多手动开启了 \(X_i\) 台电脑
  • 这 \(X_i\) 台的电脑的开启方案数有 \(2^{Xi-1}\)种(第一步得出的结论
  • 然后考虑将这 \(X_i\) 台"新"电脑开机的顺序和 \(j\) 台"旧"电脑开机的顺序合并。

    即现在有 \(X_i+j\) 个开机顺序需要确认,我们可以从中选 \(X_i\) 个放"新"电脑的开机顺序,剩下的放"旧"电脑的开机顺序,那么方案数为 \(C_{X_i+j}^{X_i}\) (或者 \(C_{X_i+j}^{j}\)也可以)

所以可得: \(f[i + 1 + X_i][j + X_i] = f[i][j] \times 2^{Xi-1} \times C[j + X_i][X_i]\)

答案即: $ans=\sum ^{n}_{i=0}f\left[ n\right] \left[ i\right] $

\(i\)、\(j\)、\(X_i\) 都可以通过枚举得到

写题解不易,如有帮助到您请点个赞给予我一点小小的鼓励!

AC_Code

#include<bits/stdc++.h>
using namespace std;
const int N = 4e2 + 10;
long long C[N][N] , bit[N];
long long n , m , ans , f[N][N];
void init(int mod)
{
bit[0] = 1;
for(int i = 1 ; i <= N - 10 ; i ++) bit[i] = bit[i - 1] * 2 % mod;
for(int i = 0 ; i <= N - 10 ; i ++)
{
C[i][0] = 1;
for(int j = 1 ; j <= i ; j ++) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
}
}
signed main()
{
cin >> n >> m;
init(m);
for(int i = 1 ; i <= n ; i ++)
{
f[i][i] = bit[i - 1];
for(int j = 0 ; j <= i ; j ++)
{
for(int k = 1 ; k + i + 1 <= n; k ++)
{
f[i + 1 + k][j + k] += f[i][j] * bit[k - 1] % m * C[j + k][k] % m;
f[i + 1 + k][j + k] %= m;
}
}
}
for(int i = 0 ; i <= n ; i ++) ans += f[n][i] , ans %= m;
cout << ans << '\n';
return 0;
}

Codeforces Global Round 14 E. Phoenix and Computers的更多相关文章

  1. [Codeforces Global Round 14]

    打挺差的. 不过\(C,D\)一眼秒了,大概是对这几个月努力的一个结果? \(B\)玄学错误挂了两发. 脑子痛然后打到一半就去睡觉了. -------------------------------- ...

  2. CodeForces Global Round 1

    CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...

  3. Codeforces Global Round 1 - D. Jongmah(动态规划)

    Problem   Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...

  4. Codeforces Beta Round #14 (Div. 2)

    Codeforces Beta Round #14 (Div. 2) http://codeforces.com/contest/14 A 找最大最小的行列值即可 #include<bits/s ...

  5. Codeforces Global Round 2 题解

    Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...

  6. Codeforces Global Round 1 (A-E题解)

    Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...

  7. Codeforces Global Round 3

    Codeforces Global Round 3 A. Another One Bites The Dust 有若干个a,有若干个b,有若干个ab.你现在要把这些串拼成一个串,使得任意两个相邻的位置 ...

  8. Codeforces Global Round 1 (CF1110) (未完结,只有 A-F)

    Codeforces Global Round 1 (CF1110) 继续补题.因为看见同学打了这场,而且涨分还不错,所以觉得这套题目可能会比较有意思. 因为下午要开学了,所以恐怕暂时不能把这套题目补 ...

  9. 【手抖康复训练1 】Codeforces Global Round 6

    [手抖康复训练1 ]Codeforces Global Round 6 总结:不想复习随意打的一场,比赛开始就是熟悉的N分钟进不去时间,2333,太久没写题的后果就是:A 题手抖过不了样例 B题秒出思 ...

随机推荐

  1. ImportError: No module named _ssl解决方法

    import ssl时出现ImportError: No module named _ssl错误是因为咱安装Python的时候没有把ssl模块编译进去导致的. 解决步骤: 系统没有openssl,手动 ...

  2. Markdown(2)基本语法

    ​ Markdown 是一种轻量级标记语言 , 通过简单的标记语法,使文本内容具有一定的格式 . 一.段落 1. 标题 语法格式: 符号 "#" 可以标记 1~6级标题.一级标题对 ...

  3. Wireguard 全互联模式(full mesh)配置指南

    上篇文章给大家介绍了如何使用 wg-gen-web 来方便快捷地管理 WireGuard 的配置和秘钥,文末埋了两个坑:一个是 WireGuard 的全互联模式(full mesh),另一个是使用 W ...

  4. LeetCode113. 路径总和 II

    原题链接 1 class Solution: 2 def pathSum(self, root: TreeNode, sum: int) -> List[List[int]]: 3 ans,tm ...

  5. macOS命令行切换Python版本

    目录 brew安装anaconda3 anaconda3环境变量设置 安装双版本 命令后切换python环境 pip ide vscode set 参考 brew安装anaconda3 brew ca ...

  6. 剑指 Offer 36. 二叉搜索树与双向链表 + 中序遍历 + 二叉排序树

    剑指 Offer 36. 二叉搜索树与双向链表 Offer_36 题目描述 题解分析 本题考查的是二叉树的中序遍历以及二叉排序树的特征(二叉排序树的中序遍历序列是升序序列) 利用排序二叉树中序遍历的性 ...

  7. docker apollo配置中心分布式部署

    Apollo 简介 Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性,适用于微服 ...

  8. 微服务网关Zuul过滤器Filter

    Zuul本质 Zuul是一个网关,关于网关的介绍参考:亿级流量架构之网关设计思路.常见网关对比, 可知Zuul是一个业务网关, 而深入了解Zuul, 基本就是一系列过滤器的集合: Zuul的过滤器 下 ...

  9. reverseLinkedList(翻转链表)

    ReverseLinkedList(翻转链表) 链表是一种物理存储单元上非连续.非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的.非连续.非顺序指的是,通过指针把一组零散的内存块串 ...

  10. CSS垂直布局

    1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...